МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федерального государственного бюджетного образовательного учреждения высшего образования

«Университет «Дубна»

(филиал «Протвино» государственного университета «Дубна»)

Кафедра «Информ	иационные технологии»
	УТВЕРЖДАЮ Директор
	А.А. Евсико
	<u>« 19 » мая</u> 2025г.
Рабочая прогр	амма дисциплины
Моделиро	ование систем
•	рвание систем дисциплины (модуля)
наименование с	
наименование с Направлет	дисциплины (модуля)
наименование о Направлег 09.03.01 – «Информат	дисциплины (модуля) ние подготовки
наименование с Направлег 09.03.01 – «Информат техн	дисциплины (модуля) ние подготовки гика и вычислительная
наименование о Направлен 09.03.01 – «Информат техн код, на	дисциплины (модуля) ние подготовки гика и вычислительная ника»
наименование о Направлен 09.03.01 – «Информат техн код, на Уровень выс	дисциплины (модуля) ние подготовки гика и вычислительная ника» пименование

Направленность (профиль) образовательной программы «Программное обеспечение вычислительной техники и автоматизированных систем»

Форма обучения
очная, заочная
 очная, очно-заочная, заочная

Автор программы:	
Гусев В.В., доцент, к.фм.н., доцент, каф	едра «Информационные технологии»
(подпись)	
Программа составлена в соответствии с Ф стандартом высшего образования и учебн 09.03.01 «Информатика и вычислительна:	
Программа рассмотрена на заседании каф	редры «Информационные технологии»
Протокол заседания № <u>10</u> от « <u>14</u> »	<u>мая</u> 2025 г.
Заведующий кафедрой (подпись)	_ / Черноверская В.В./
(подпись)	(фамилия, имя, отчество)
Рецензент:	

Оглавление

1 Цели и задачи освоения дисциплины (модуля)	.4
2 Объекты профессиональной деятельности при изучении дисциплины (модуля)	.4
3 Место дисциплины (модуля) в структуре ОПОП	.4
4 Планируемые результаты обучения по дисциплине (модулю), соотнесенные с	
планируемыми результатами освоения образовательной программы (компетенциями	
выпускников)	.4
5 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических	Ĺ
или астрономических часов, выделенных на контактную работу обучающихся с	
преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся	. 5
6 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием	
отведенного на них количества академических или астрономических часов и виды учебных	
занятий	5
7 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся	
по дисциплине (модулю) и методические указания для обучающихся по освоению	
дисциплины (модулю)	. 8
8 Применяемые образовательные технологии для различных видов учебных занятий и для	
контроля освоения обучающимися запланированных результатов обучения	. 8
9 Фонд оценочных средств для промежуточной аттестации по дисциплине (модулю)	.8
10 Ресурсное обеспечение	17
11 Язык преподавания	19

1 Цели и задачи освоения дисциплины (модуля)

Курс «Моделирование систем» предназначен для приобретения студентами: понимания места и роли моделирования при анализе и синтезе сложных систем; умения применять современные технологии планирования и проведения компьютерного моделирования; знаний анализа и интерпретации результатов моделирования, проверки адекватности модели исследуемой системе.

Задачи дисциплины

После изучения дисциплины студенты должны знать:

- цели и методологию моделирования;
- основные классы существующих моделей;
- методы формализации систем и способы их реализации с помощью современных компьютерных технологий;
- навыки исследования и анализа динамических систем;
- типовые алгоритмы стохастического моделирования;
- методы обработки данных компьютерных экспериментов.

2 Объекты профессиональной деятельности при изучении дисциплины (модуля) Объектами профессиональной деятельности в рамках изучаемой дисциплины (модуля) являются:

Математическое и программное обеспечение ЭВМ (указываются из перечисленных в п.4.2 ФГОС ВО)

3 Место дисциплины (модуля) в структуре ОПОП

Дисциплина Б1.В.ОД.18 «Моделирование систем» относится к обязательным дисциплинам вариативной части блока дисциплин ОПОП ВО.

Приступая к изучению дисциплины, студенты должны иметь твердые знания, умения, навыки и компетенции по предметам «Математический анализ», «Линейная алгебра», «Теория вероятностей и математическая статистика», «Методы оптимизации», «Теория принятия решений». Входящие компетенции: ОК-7, ОПК-5, ПК-3.

Освоение материала дисциплины позволит студенту быть подготовленным к изучению дисциплин при подготовке и защите выпускной квалификационной работы и последующей профессиональной деятельности в качестве бакалавра по направлению 09.03.01 «Информатика и вычислительная техника».

4 Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Формируемые компетенции (код компетенции, уровень (этап) освоения) (последний – при наличии в карте компетенции)	Планируемые результаты обучения по дисциплине (модулю), характеризующи этапы формирования компетенций					
ПК-3: способность обосновывать принимаемые проектные решения, осуществлять постановку и выполнять эксперименты по проверке их корректности и эффективности.	Знать: основы общей теории сложных систем, классификацию и закономерности систем, методы и модели описания и анализа систем Языки и инструментальные средства моделирования Уметь: выполнять сравнительный анализ различных моделей представления знаний для решения					

прикладных задач компьютерного
моделирования интеллектуальной
деятельности человека
Владеть:
навыками использования алгоритмов методов
решения практических задач

результат обучения сформулирован на основании требований профессиональных стандартов:

- «Руководитель разработки программного обеспечения» №190 (приказ Министерства труда и социальной защиты РФ от 17 сентября 2014 г. № 645н);
- «Программист» №4 (приказ Министерства труда и социальной защиты РФ от 18 декабря 2013 г. № 679н);
- «Специалист по научно-исследовательским и опытно-конструкторским разработкам» №32 (приказ Министерства труда и социальной защиты РФ от 04 марта 2014 г. №121н)

5 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Объем дисциплины (модуля) составляет 2 зачетных единиц, всего 72 часов, из которых:

51 часов составляет контактная работа обучающегося с преподавателем¹:

17 часов – лекционные занятия;

34 часов – практические занятия;

Мероприятия промежуточной аттестации – зачет с оценкой;

21 час составляет самостоятельная работа обучающегося.

6 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических или астрономических часов и виды учебных занятий

№ темы	Наименование тем	Содержание тем	
1	Основные понятия теории моделирования сложных систем.	Классификация видов моделирования сис Проблема качества моделирования. Адекватност изучаемой системе. Причины и устранен неадекватности модели изучаемой системе. Осс компьютерного моделирования. Требован пользователя к модели. Основные этапы модел систем. Построение концептуальных моделей их формализация. Алгоритмизация моделей си машинная реализация. Непрерывно-детермини модели (D-схемы). Дискретно-детерминиров модели (F-схемы). Дискретно-стохастические модели (Комбинированные модели.	ть модели пие обенности ния ирования систем и их рованные ванные модели (Р-
2	Моделирование динамических систем	Понятие о динамической системе и её модели. П состояния системы, начальные условия, з функционирования. Точки равновесия, фат пространство, фазовая траектория, фазовый и системы. Устойчивость и неустойчивость т равновесия. Точки равновесия в автоном динамических системах двух переменны	акон зовое портрет гочек ных

¹ Перечень видов учебных занятий уточняется в соответствии с учебным планом.

1

	T	7
		Аналитическое исследование и компьютерное моделирование поведения систем. Понятие о преобразовании Лапласа. Функциональное описание системы. Передаточная функция. Методы вычисления передаточной функции. Колебательные системы. Модели систем: механические, электрические, химические системы. Биологические системы: модель Мальтуса динамики численности народонаселения земного шара; модель Ферхюльста численности однородной популяции; модель Вальтера-Лотки. Модели систем с элементами случайного поведения. Примеры систем, отличных от детерминированных.
3	Моделирование Стохастических систем.	Примеры систем, отличных от детерминированных. Генераторы случайных и псевдослучайных чисел. Оценка качества датчика случайных чисел. Моделирование случайных величин с заданным законом распределения. Теория метода Монте-Карло. Возможности метода статистических испытаний и его точность. Примеры статистического моделирования.
4	Моделирование распределённых систем	Классификация задач математической физики. Начальные и граничные условия. Вычислительные методы исследования распределённых систем: метод конечных элементов; метод конечных разностей.
5	Имитационное моделирование	Имитационное моделирование систем с очередями. Потоки случайных событий. Пуассоновский поток случайных событий. Модели систем с очередями. Связь с теорией массового обслуживания. Анализ очередей Структура систем с ожиданием. Показатели работы системы. Анализ затрат. Дисциплина обслуживания очереди.
6	Обработка результатов вычислительных экспериментов	Планирование вычислительных экспериментов. Методы теории планирования экспериментов. Факторные пространства. Оценка влияния и взаимосвязи факторов. Виды факторного анализа экспериментов. Обработка результатов вычислительных эксперимента. Метод наименьших квадратов. Регрессионный анализ результатов моделирования. Проверка адекватности модели. Корреляционный анализ результатов моделирования.
7	Языки и и инструментальные средства моделирования	Обзор языков и программных средств моделирования.

								Вп	сом числе:					
		Контактная работа (работа во взаимодействии с преподавателем), часы из них ²										Самостоятельная работа обучающегося, часы, из них		
Наименование и краткое содержание разделов и тем дисциплины (модуля) Форма промежуточной аттестации по дисциплине (модулю)	Всего (часы)	Лекционные занятия	Семинарские занятия	Практические занятия	Лабораторные занятия		Групповые консультации	Индивидуальные консультации	Учебные занятия, направленные на проведение текущего контроля успеваемости (коллоквиумы, практические контрольные занятия и др.)*	Всего	Выполнение домашних заданий	Подготовка рефератов и т.п.	Всего	
			3 cei	местр		•								
Тема 1 Основные понятия теории моделирования сложных систем		1								1				
Тема 2 Моделирование динамических систем		4		8						12	7		7	
Тема 3 Моделирование Стохастических систем.		4		8						12				
Тема 4 Моделирование распределённых систем		2		4						6	7		7	
Тема 5 Имитационное моделирование		2		4						6				
Тема 6 Обработка результатов вычислительных экспериментов		2		2						4	7		7	
Тема 7 Языки и инструментальные средства моделирования		2		8						10				
Промежуточная аттестация дифференцированный зачет с оценкой (указывается форма проведения)**		X					· · · · · ·				X			
Итого		17		34						51	21		21	

 $^{^{2}}$ Перечень видов учебных занятий уточняется в соответствии с учебным планом.

7 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) и методические указания для обучающихся по освоению дисциплины (модулю)

Задания к выполнению контрольных работ.

Задания к практическим занятиям

8 Применяемые образовательные технологии для различных видов учебных занятий и для контроля освоения обучающимися запланированных результатов обучения

Указываются образовательные технологии, используемые при реализации различных видов учебной работы (занятий) и дающие наиболее эффективные результаты освоения дисциплины (модуля).

Перечень обязательных видов работы студента:

- Посещение лекционных занятий;
- посещение семинарских занятий;
- выполнение контрольных работ;
- самостоятельная работа студента (СРС) направлена на закрепление навыков самостоятельного выполнения тематических заданий;
- подготовка к опросу (рубежный контроль);
- участие в групповых дискуссиях на семинарских занятиях;
- сдача зачёта.

9 Фонд оценочных средств для промежуточной аттестации по дисциплине (модулю)

ПК-3: способность обосновывать принимаемые проектные решения, осуществлять постановку и выполнять эксперименты по проверке их корректности и эффективности. Полная карта компетенции ОПК-5 приведена в документе «Матрица формирования компетенций» по направлению бакалавриата 09.03.01 Информатика и вычислительная техника»

Описание шкал оценивания

В 7 семестре (**сдача зачета**) максимальное количество баллов, которые студент может набрать за семестр -100, в том числе:

49 баллов за посещение занятий, по 1 баллу за посещение лекции или практического занятия);

30 баллов за выполнение контрольной работы;

21 баллов за контрольные работы.

По результатам работы в семестре студент может получить автоматическую оценку «удовлетворительно», «хорошо» или «отлично» и может зачет с оценкой не сдавать. При желании повысить свою оценку, студент имеет право отказаться от автоматической оценки и сдать зачет с оценкой.

Если студент не набрал минимального количества баллов (51 балл) в течение семестра, то он в обязательном порядке сдаёт зачет с оценкой.

Общая сумма баллов за	Итоговая оценка
семестр	
86-100	Зачтено
71-85	Хорошо
51-70	Удовлетворительно
0-50	Не зачтено

По итогам работы в семестре студент может получить максимально 100 баллов. Итоговой формой контроля является экзамен.

В течение семестра студент может заработать баллы за следующие виды работ:

Таблица 7

No	Вид работы	Сумма баллов
1	Работа на практических занятиях	21
2	Аудиторные и практические занятия (посещение)	49
3	Решение контрольных заданий (самостоятельные работа)	30
	Итого:	100

Текущий контроль успеваемости осуществляется в процессе выполнения практических и самостоятельных работ в соответствии с ниже приведенным графиком.

Виды	Недели работ																
работ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
ПР-2					B3 1			33 1	B3 2			33 2	B3 3			33 3	

ВЗ – выдача задания

33 – защита задания

Критерии и процедуры оценивания результатов обучения по дисциплине

ПК-3: способность обосновывать принимаемые проектные решения, осуществлять постановку и выполнять эксперименты по проверке их корректности и эффективности.³

эффективности. РЕЗУЛЬТАТ ОБУЧЕНИЯ по дисциплине (модулю) *)	Уров ень осво ения комп етен ции*		КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю) ШКАЛА оценивания (критерии берутся из соответствующих карт компетенций, шкала оценивания (4 или более шагов) устанавливается в зависимости от того, какая система оценивания (традиционная или балльно-рейтинговая) применяется)						
		1	2	3	4	5			
Знать: основы общей теории сложных систем, классификацию и закономерности систем, методы и модели описания и анализа систем Языки и и инструментальные средства моделирования	I - порог овый	От сут ств ие зна ни й	Не знает или знает слабо: основы общей теории сложных систем, классификацию и закономерности систем, методы и модели описания и анализа систем, языки и инструменталь ные средства моделирования Допускает множественные грубые ошибки.	Удовлетворите льно знает основы общей теории сложных систем, классификаци ю и закономерност и систем, методы и модели описания и анализа систем, языки и инструментал ьные средства моделировани я. Допускает достаточно серьезные ошибки.	Хорошо знает основы общей теории сложных систем, классифик ацию и закономер ности систем, методы и модели описания и анализа систем, языки и инструме нтальные средства моделиро вания, но допускает отдельные	Демонстрирует свободное и уверенное знание основ общей теории сложных систем, классификаций и закономерностей систем, методов описания и анализа систем, языков и инструментальных средства моделирования, не допускает ошибок.	Устное собеседо вание.		

_

³ Данная таблица заполняется <u>по каждой компетенции</u>, формирование которой предусмотрено рабочей программой дисциплины (модуля), <u>отдельно</u>.

Уметь: выполнять сравнительный анализ различных моделей представления знаний для решения прикладных задач компьютерного моделирования интеллектуальной деятельности человека	I - порог овый	От сут ств ие ум ен ий	Демонстрирует частичное умение выполнять сравнительный анализ различных моделей представления знаний для решения прикладных задач компьютерного моделирования интеллектуальн ой деятельности человека Допускает множественные грубые ошибки.	Демонстрируе т частичное умение выполнять сравнительны й анализ различных моделей представления знаний для решения прикладных задач компьютерног о моделировани я интеллектуаль ной деятельности человека Допускает достаточно серьезные ошибки.	негрубые ошибки. Демонстр ирует достаточн о устойчиво е выполнять сравнител ьный анализ различных моделей представл ения знаний для решения прикладн ых задач компьюте рного моделиров ания интеллект уальной деятельно сти человека, но допускает отдельные негрубые ошибки.	Демонстрирует устойчивое умение выполнять сравнительный анализ различных моделей представления знаний для решения прикладных задач компьютерного моделирования интеллектуально й деятельности человека, не допускает ошибок.	ПКЗ
Владеть: навыками использования алгоритмов методов решения практических задач	I - порог овый	От сут ств ие вл аде ни я	Демонстрирует низкий уровень владения навыками использования алгоритмов методов решения практических задач. Допускает множественные грубые ошибки.	Демонстрируе т удовлетворите льный уровень владения навыками использования алгоритмов методов решения практических задач, но допускает достаточно серьезные ошибки.	Демонстр ирует хороший уровень владения навыками использов ания алгоритмо в методов решения практичес ких задач, но допускает отдельные негрубые ошибки.	Демонстрирует высокий уровень владения навыками использования алгоритмов методов решения практических задач, не допускает ошибок.	ПКЗ

Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения, характеризующих этапы формирования компетенций и (или) для итогового контроля сформированности компетенции.

Формой промежуточной аттестации по дисциплине является зачёт с оценкой. Зачёт проводится на основе результатов контрольных работ, практических занятий и ответов на контрольные вопросы.

Ниже приводится полный перечень вопросов для подготовки к зачёту.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Математическое моделирование. Понятие математического моделирования. Понятие системы в математическом моделировании.
- **2.** Классификация математических моделей в зависимости от сложности объекта моделирования
- **3.** Классификация математических моделей в зависимости от оператора модели (линейный, нелинейный, алгоритмический и др.)
- 4. Классификация математических моделей в зависимости от параметров модели
- 5. Классификация математических моделей в зависимости от целей моделирования
- **6.** Исследование особых точек дифференциального уравнения одной переменной $\frac{dx}{dt} = F(x)$.
- **7.** Исследование качественной структуры особых точек двух уравнений $\begin{cases} dx & p_{x,y}(x) \\ dx & p_{y,y}(x) \end{cases}$

$$\begin{cases} \frac{dx}{dt} = P(x(t), y(t)) \\ \frac{dy}{dt} = Q(x(t), y(t)) \end{cases}$$

- 8. Понятие фазовых траекторий.
- 9. Определение матрицы линеаризации.
- 10. Получение характеристического уравнения.
- 11. Классификация грубых особых точек через корни характеристического уравнения.
- 12. Предельные циклы динамических систем.
- 13. Модель конкуренции популяций. Постановка задачи.
- 14. Модель конкуренции популяций. Особые точки и возможные конфигурации системы от параметров задачи.
- 15. Модель конкуренции популяций. Анализ особых точек.
- 16. Классификация колебательных систем.
- 17. Линейная и нелинейная колебательная система.
- 18. Сосредоточенные и точечные системы.
- 19. Консервативные и неконсервативные системы.
- 20. Консервативный осциллятор.
- 21. Линейный осциллятор с затуханием.
- 22. Классификация уравнений математической физики двух переменных.
- 23. Физические процессы, описываемые уравнения эллиптического типа.
- 24. Физические процессы, описываемые уравнения гиперболического типа.
- 25. Физические процессы, описываемые уравнения параболического типа.
- 26. Модели систем с элементами случайного поведения.
- 27. Дискретные и непрерывные случайные величины.
- 28. Генераторы случайных и псевдослучайных чисел.
- 29. Моделирование случайных величин с заданным законом распределения.
- 30. Теория метода Монте-Карло.
- 31. Центральная предельная теорема
- 32. Случайные величины с нормальным законом распределения.
- 33. Моделирования случайных величин с нормальным законом распределения. Метод, основанный на центральной предельной теореме.
- 34. задача интерполирования,
- 35. задача аппроксимации.
- **36.** Интерполяция по Лагранжу.
- 37. Сглаживание опытных данных методом наименьших квадратов

Тест на усвоение материала

1. Классические модели

1.1 Модель спроса-предложения $\begin{cases} s_{n+1} = ap_n - b \\ d_{n+1} = -cp_n + g \end{cases}$ соответствует устойчивому $s_{n+1} = d_{n+1}$

состоянию рынка при каких значениях $A = \frac{a}{c}$?

- a) A > 2
- 6) 0 < A < 2
- c) 0 < A < 1
- д) -1 < A < 1
- 1.2 Модель спроса-предложения $\begin{cases} s_{n+1} = ap_n b \\ d_{n+1} = -cp_n + g \end{cases}$ соответствует неустойчивому $s_{n+1} = d_{n+1}$

состоянию рынка при каких значениях $A = \frac{a}{c}$?

- a) A > 2
- 6) 0 < A < 2
- c) 0 < A < 1
- д)1 < A
- 1.3 Какое максимальное количество точек равновесия имеет система

$$\begin{cases} \frac{dN_1}{dt} = N_1(t)*[r1*(ng1-N_1(t))-al2*N_2(t)]\\ \frac{dN_2}{dt} = N_2(t)*[r2*(ng2-N_2(t))-al1*N_1(t)] \end{cases},$$
 соответствующая модели

конкуренции популяций?

- a) 3
- б) 2
- c)4
- д) 5
- 1.4 Какого типа точка равновесия $(N_1 = 0, N_2 = 0)$ системы

$$\begin{cases} \frac{dN_1}{dt} = N_1(t)*[r1*(ng1-N_1(t))-al2*N_2(t)]\\ \frac{dN_2}{dt} = N_2(t)*[r2*(ng2-N_2(t))-al1*N_1(t)] \end{cases},$$
 соответствующей модели

конкуренции популяций?

- а) устойчивый узел
- б)неустойчивый узел
- с) устойчивый фокус
- д) неустойчивый фокус
- с) центр

2. Качественная теория динамических систем

- 2.1 Какие точки равновесия уравнения $\frac{dx}{dt} = (x+2)(x+1)(3-x)(5-x)$ являются устойчивыми?
- a) $x_1 = -1$; $x_2 = 3$

6)
$$x_1 = -1; x_2 = 5$$

c)
$$x_1 = -2$$
; $x_2 = 3$

д)
$$x_1 = 3; x_2 = 5$$

2.2 Какие точки равновесия уравнения
$$\frac{dx}{dt} = (x+2)(x-3)(3+x)(5-x)$$
 являются неустойчивыми?

a)
$$x_1 = -3$$
; $x_2 = 3$

6)
$$x_1 = -2$$
; $x_2 = 5$

c)
$$x_1 = -2$$
; $x_2 = 3$

д)
$$x_1 = 3; x_2 = 5$$

2.3 Фазовые траектории системы
$$\begin{cases} \frac{dx}{dt} = P(x, y, t) \\ \frac{dy}{dt} = Q(x, y, t) \end{cases}$$
 определены в пространстве

координат

- a) (x,t)
- 6) (*x*, *y*)
- c) (y,t)
- \mathbf{J}) (x, y, t)

2.4 Какая точка
$$(x, y)$$
 системы
$$\begin{cases} \frac{dx}{dt} = (x-3)(y-5)(x-6) \\ \frac{dy}{dt} = (y-3)(x-5)(y-6) \end{cases}$$
 не является точкой

равновесия?

- a) P(x = 3, y = 6)
- 6) P(x = 6, y = 3)
- c) P(x = 3, y = 3)
- д) P(x = 5, y = 3)

2.5 Какая матрица является матрицей линеаризации системы
$$\begin{cases} \frac{dx}{dt} = 2x + 3y + 4 \\ \frac{dy}{dt} = x - 6y + 5 \end{cases}$$

a)
$$\begin{pmatrix} 2 & 1 \\ 3 & -6 \end{pmatrix}$$

6) $\begin{pmatrix} 2 & 4 \\ 3 & 5 \end{pmatrix}$
c) $\begin{pmatrix} 2 & 3 \\ 1 & -6 \end{pmatrix}$

$$6)\begin{pmatrix} 2 & 4 \\ 3 & 5 \end{pmatrix}$$

c)
$$\begin{pmatrix} 2 & 3 \\ 1 & -6 \end{pmatrix}$$

д)
$$\begin{pmatrix} 2 & 3 & 4 \\ 1 & -6 & 5 \end{pmatrix}$$

2.6 Собственные значения матрицы линеаризации в точке равновесия (x_0, y_0) системы

Сооственные значения матрицы линеаризации в точке равновесия
$$(x_0, y)$$
 $\begin{cases} \frac{dx}{dt} = P(x, y) \\ pавны & (\lambda_1 = 2, \lambda_2 = 5) \end{cases}$. К какому типу относится эта точка $\frac{dy}{dt} = Q(x, y)$

равновесия?

- а) устойчивый узел
- б) неустойчивый узел
- с) устойчивый фокус
- д) неустойчивый фокус
- с) центр

Собственные значения матрицы линеаризации в точке равновесия (x_0, y_0) системы 2.7

$$\begin{cases} \frac{dx}{dt} = P(x,y) \\ \frac{dy}{dt} = Q(x,y) \end{cases}$$
 равны $(\lambda_1 = 2, \lambda_2 = -5)$. К какому типу относится эта точка

равновесия?

- а) устойчивый узел
- б) неустойчивый узел
- с) устойчивый фокус
- д) неустойчивый фокус
- с) седловая точка

Собственные значения матрицы линеаризации в точке равновесия (x_0, y_0) системы 2.8

Собственные значения матрицы линеаризации в точке равновесия
$$(x_0,y_0)$$
 о $\begin{cases} \frac{dx}{dt} = P(x,y) \\ & \text{равны } (\lambda_1 = -2, \lambda_2 = -3) \end{cases}$. К какому типу относится эта точка $\begin{cases} \frac{dy}{dt} = Q(x,y) \end{cases}$

равновесия?

- а) устойчивый узел
- б) неустойчивый узел
- с) устойчивый фокус
- д) неустойчивый фокус
- с)седловая точка

2.9 Собственные значения матрицы линеаризации в точке равновесия (x_0, y_0) системы

$$\begin{cases} \frac{dx}{dt} = P(x,y) \\ \frac{dy}{dt} = Q(x,y) \end{cases}$$
 равны $(\lambda_1 = 2 + 3i, \lambda_2 = 2 - 3i)$. К какому типу относится эта точка

равновесия?

- а) устойчивый узел
- б) неустойчивый узел
- с) устойчивый фокус
- д) неустойчивый фокус
- с) центр

2.10 Собственные значения матрицы линеаризации в точке равновесия (x_0, y_0) системы

$$\begin{cases} \frac{dx}{dt} = P(x,y) \\ \frac{dy}{dt} = Q(x,y) \end{cases}$$
 равны $(\lambda_1 = 2i, \lambda_2 = -2i)$. К какому типу относится эта точка

равновесия?

- а) устойчивый узел
- б) неустойчивый узел
- с) устойчивый фокус
- д) неустойчивый фокус
- с)!!! центр

3. Распределённые системы

3.1 Какого типа уравнение
$$a_{11} \frac{\partial^2 u}{\partial x^2} - 2a_{12} \frac{\partial^2 u}{\partial x \partial y} + a_{22} \frac{\partial^2 u}{\partial y^2} = f(x, y, u)$$
 $(a_{11} = 2, a_{12} = 1, a_{22} = 3)$?

- а) эллиптического
- б) параболического
- с) тригонометрического
- д) гиперболического

3.2 Какого типа уравнение
$$a_{11} \frac{\partial^2 u}{\partial x^2} - 2a_{12} \frac{\partial^2 u}{\partial x \partial y} + a_{22} \frac{\partial^2 u}{\partial y^2} = f(x, y, u)$$
 $(a_{11} = 1, a_{12} = 1, a_{22} = 1)$?

- а) эллиптического
- б) параболического
- с) тригонометрического
- д) гиперболического

3.3 Какого типа уравнение
$$a_{11} \frac{\partial^2 u}{\partial x^2} - 2a_{12} \frac{\partial^2 u}{\partial x \partial y} + a_{22} \frac{\partial^2 u}{\partial y^2} = f(x, y, u)$$
 $(a_{11} = 1, a_{12} = 2, a_{22} = 1)$?

- а) эллиптического
- б) параболического
- с) тригонометрического
- д) гиперболического

4. Статистическое моделирование систем

- 4.1 Основной метод статистического моделирования
- а) метод Гаусса
- б) метод Эйлера
- с) метод Монте-Карло
- д) метод случайных чисел
- 4.2 Случайная величина ξ равномерно распределена в интервале [0,1]. Какая случайная величина равномерно распределена на интервале [1,3]?
- a) $\eta = 2\xi + 2$
- 6) $\eta = 3\xi + 1$
- c) $\eta = 2\xi + 1$
- д) $\eta = \xi + 3$
- 4.3 Чему равно математическое ожидание $M[\xi]$ случайной величины ξ , равномерно распределённой на интервале [-2,2]?

- a) $M[\xi] = -2$
- 6) $M[\xi] = -1$
- c) $M[\xi] = 0$
- д) $M[\xi] = 1$
- e) $M[\xi] = 2$

Пример задания к Теме 3.

Моделирование дискретной случайной величины.

Случайная величина ξ называется дискретной, если она может принимать дискретное множество значений x_1, x_2, \dots, x_n^*).

Дискретная случайная величина \$ определяется таблицей

$$\xi = \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ \rho_1 & \rho_2 & \dots & \rho_n \end{pmatrix}, \quad (T)$$

где x_1 , x_2 , ..., x_{n-} возможные значения величины ξ , а

 p_1 , p_2 , ..., p_n — соответствующие им вероятности. Точнее говоря, вероятность того, что

 $\mathsf{P}(\xi = x_i)$ случайная величина ξ примет значение ξ (обозначим через), равна p_i .

$$P\left\{\xi = x_{t}\right\} = p_{t}.$$

Таблица (Т) называется распределением случайной величины.

Числа x_1, x_2, \ldots, x_n могут быть, вообще говоря, любыми. Однако вероятности

$$p_1, p_2, \ldots, p_n$$

должны удовлетворять двум условиям:

а) все p_i положительны:

$$p_i > 0;$$
 (1)

б) сумма всех p_i равна 1:

$$p_1 + p_2 + \ldots + p_n = 1.$$
 (2)

Последнее условие означает, что ξ обязана в каждом случае принять одно из значений x_1, x_2, \ldots, x_n

Математическим ожиданием случайной величины называется число

$$\mathbf{M}\xi = \sum_{i=1}^{n} x_i p_i. \tag{3}$$

Отсюда видно, что $M\xi$ — это среднее значение величины ξ , причем более вероятные значения x_i входят в сумму с большими весами. Отметим основные свойства математического ожидания: если с — какая-нибудь не случайная величина, то

$$M(\xi+c)=M\xi+c,$$

$$\mathsf{M}(c\xi) = c\mathsf{M}\xi; \tag{5}$$

если у и т — две любые случайные величины, то

$$\mathbf{M}(\xi + \eta) = \mathbf{M}\xi + \mathbf{M}\eta. \tag{6}$$

$$\mathsf{D}\xi = \mathsf{M}\left[(\xi - \mathsf{M}\xi)^2 \right] \tag{7}$$

Следовательно, дисперсия **D**\$—это математическое

ожидание квадрата отклонения случайной величины ξ от ее среднего значения $M\xi$. Очевидно, всегда $D\xi > 0$

Математическое ожидание и дисперсия — важнейшие числовые характеристики случайной величины §.

Если мы будем наблюдать величину ξ много раз и получим значения $\xi_1, \xi_2, ..., \xi_N$ (каждое из которых будет равно одному из чисел $x_1, x_2, ..., x_n$), то среднее арифметическое от этих значений будет близко к $M\xi$:

$$\frac{1}{N}(\xi_1 + \xi_2 + \dots + \xi_N) \approx \mathsf{M}\xi \tag{8}$$

А дисперсия $D\xi$ характеризует разброс этих значений около среднего $M\xi$

Формулу для дисперсии можно преобразовать:

$$D\xi = M [\xi^2 - 2M\xi \cdot \xi + (M\xi)^2] = M (\xi^2) - 2M\xi \cdot M\xi + (M\xi)^2$$

Oткуда. D
$$\xi = \mathbf{M} (\xi^2) - (\mathbf{M}\xi)^2$$
. (9)

Для независимых случайных величин

$$D(v+w) = D(v) + D(w) \tag{10}$$

Статистическую оценку для дисперсии можно получить по формуле

$$D(\gamma) \approx \frac{1}{N} \sum_{i=1}^{N} \gamma_i^2 - \left(\frac{1}{N} \sum_{i=1}^{N} \gamma_i\right)^2$$
 (11)

1. Задание I

- 1.1.1 Согласно варианту выбрать таблицы распределения $v = A \ w = B$.
- 1.1.2 Вычислить математическое ожидание и дисперсию случайных величин v и w по формулам (3) и (9) соответственно.
- 1.1.3 Построить таблицу распределения для случайной величины $\tau = v + w$.
- 1.1.4 Вычислить математическое ожидание и дисперсию случайной величины т.
- 1.1.5 Проверить соотношения (6) и (10).
- 1.1.6 Оформить отчёт в электронном виде.

2. Задание II

- 2.1 Построить алгоритмы, моделирующие дискретные случайные величины *v* и *w* величину по заданным таблицам распределения Задания I в виде отдельных функций.
- **2.2** Вычислить математическое ожидание по формуле (8)и дисперсию этих случайных величин по формуле (11)
- **2.3** Построить гистограмму распределений случайных величин, используя функцию histplot
- 2.4 Оформить отчёт в электронном виде.

Студент изучает теоретический материал и сдаёт отчёт

Работа должна быть оформлена в виде электронного отчёта. Результаты должны включать теоретически материал, программы расчёты, «скриншоты» результатов работы программ, графики полученных распределений в виде гистограмм.

10 Ресурсное обеспечение

• Перечень основной и дополнительной учебной литературы Основная учебная литература

- 1. Советов, Б. Я. Моделирование систем: учебник для академического бакалавриата [Электронный ресурс]/ Б. Я. Советов, С. А. Яковлев. 7-е изд. М.: Издательство Юрайт, 2019. 343 с. (Серия: Бакалавр. Академический курс). ISBN 978-5-9916-3916-3/ Текст: электронный// ЭБС "Юрайт". URL: https://biblio-online.ru/bcode/425228 (дата обращения:14.04.2021). Режим доступа: ограниченный по логину и паролю
- 2. Интерактивные системы Scilab, Matlab, Mathcad: учебное пособие / И.Е. Плещинская, А.Н. Титов, Е.Р. Бадертдинова, С.И. Дуев. Казань: Казанский научно-исследовательский технологический университет (КНИТУ), 2014. 195 с.: табл., ил. ISBN 978-5-7882-1715-4.— Текст: электронный // ЭБС "Университетская библиотека онлайн". URL: http://biblioclub.ru/index.php?page=book&id=428781 (дата обращения: 11.04.2021). Режим доступа: ограниченный по логину и паролю
- 3. Компьютерное моделирование : учебник / В.М. Градов, Г.В. Овечкин, П.В. Овечкин, И.В. Рудаков Москва : КУРС : ИНФРА-М, 2020. 264 с. ISBN 978-5-16-105145-0.
 Текст : электронный. // ЭБС "Znanium.com". URL:

https://new.znanium.com/catalog/product/1062639 (дата обращения: 11.04.2021) . Режим доступа: ограниченный по логину и паролю

Дополнительная учебная литература

- 1. Советов, Б. Я. Моделирование систем. Практикум: учебное пособие для бакалавров / Б. Я. Советов, С. А. Яковлев. 4-е изд., перераб. и доп. М.: Издательство Юрайт, 2019. 295 с. (Серия: Бакалавр. Академический курс). ISBN 978-5-9916-2857-0 Текст: электронный/ ЭБС "Юрайт". URL: https://biblio-online.ru/bcode/425258 (дата обращения:14.04.2021). Режим доступа: ограниченный по логину и паролю
- 2. Кобелев, Н. Б. Имитационное моделирование объектов с хаотическими факторами: Учебное пособие / Кобелев Н.Б. Москва : КУРС, НИЦ ИНФРА-М, 2017. 192 с.: (Бакалавриат). ISBN 978-5-16-103868-0. Текст : электронный. // ЭБС "Znanium.com". URL: https://new.znanium.com/catalog/product/754579 (дата обращения: 09.04.2021). Режим доступа: ограниченный по логину и паролю

• Периодические издания

- 1. Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика: научный журнал / Учредитель: МГУ им. М.В. Ломоносова; гл. ред. академик РАН Моисеев Е.И. М.: ФГБОУ ВО МГУ им. М.В. Ломоносова Журнал выходит 2 раза в полуг. Основан в 1977 году. ISSN 0137-0782. Текст : электронный. Полные электронные версии статей журнала доступны по подписке на сайте научной электронной библиотеки «eLIBRARY.RU»: https://www.elibrary.ru/title_about.asp?id=8373
- 2. Дискретный анализ и исследование операций: научный журнал / Учредители: Сибирское отделение РАН, Институт математики им. С.Л. Соболева СО РАН; гл. ред. В.Л. Береснев. Журнал выходит 6 раз в год. Основан в 1994 году. ISSN 1560-7542. Текст: электронный. Полные электронные версии статей журнала доступны по подписке на сайте научной электронной библиотеки «eLIBRARY.RU»: https://elibrary.ru/title_about.asp?id=25528
- 3. Программные продукты и системы: международный научно-практический журнал / Учредитель: Куприянов В.П.; гл. ред. Савин Г.И. Тверь: Центрпрограммсистем. журнал выходит 2 раза в полуг. Основан в 1988 году. ISSN: 0236-235Х. Текст: электронный. Полные электронные версии статей представлены на сайте журнала: http://swsys.ru/
- 4. Информационные технологии и вычислительные системы: научный журнал / Учредитель Федеральное государственное учреждение "Федеральный исследовательский центр "Информатика и управление" РАН; гл. ред. Попков Ю.С. М.: ФГУ Федеральный исследовательский центр "Информатика и управление" РАН. Журнал выходит 2 раза в полуг. Основан в 1995 г. ISSN 2071-8632. Текст : электронный. Полные электронные версии статей журнала доступны по подписке на сайте научной электронной библиотеки «eLIBRARY.RU»: https://www.elibrary.ru/title_about_new.asp?id=8746
- 5. Открытые системы СУБД / Учредитель: ООО «Издательство «Открытые системы»; гл. ред. Д. Волков. М.: Издательство «Открытые системы». журнал выходит 2 раза в полуг. Основан в 1993 году. ISSN: 1028-7493. Текст : электронный. Полные электронные версии статей представлены на сайте журнала: https://www.osp.ru/os/archive

• Перечень ресурсов информационно-телекоммуникационной сети «Интернет» Электронно-библиотечные системы и базы данных

- 1. $\supset EC \ll Znanium.com$: http://znanium.com/
- 2. ЭБС «Лань»: https://e.lanbook.com/
- 3. ЭБС «Юрайт»: https://biblio-online.ru/

- 4. ЭБС «Университетская библиотека онлайн»: http://biblioclub.ru/
- 5. Научная электронная библиотека (РУНЭБ) «eLIBRARY.RU»: http://elibrary.ru
- 6. Национальная электронная библиотека (НЭБ): http://нэб.рф/
- 7. Базы данных российских журналов компании «East View»: https://dlib.eastview.com/

Научные поисковые системы

- 1. Math-Net.Ru современная информационная система, предоставляющая российским и зарубежным математикам различные возможности поиска информации о математической жизни в России http://www.mathnet.ru/
- 2. Google Scholar поисковая система по научной литературе. Включает статьи крупных научных издательств, архивы препринтов, публикации на сайтах университетов, научных обществ и других научных организаций https://scholar.google.ru/
- 3. SciGuide навигатор по зарубежным научным электронным ресурсам открытого доступа. http://www.prometeus.nsc.ru/sciguide/page0601.ssi
- 4. ArXiv.org научно-поисковая система, специализируется в областях: компьютерных наук, астрофизики, физики, математики, квантовой биологии. http://arxiv.org/
- 5. WorldWideScience.org глобальная научная поисковая система, которая осуществляет поиск информации по национальным и международным научным базам данных и порталам. http://worldwidescience.org/

Профессиональные ресурсы сети «Интернет»

- 1. Федеральная информационная система «Единое окно доступа к информационным ресурсам»: http://window.edu.ru/
- 2. Алгоритмы, методы, программы: algolist.manual.ru.
- 3. Математический сайт Math.ru http://math.ru/lib/
- 4. Образовательный математический сайт EXPonenta.ru http://exponenta.ru
- 5. OpenNet: www.opennet.ru.
- 6. Проект Инициативного Народного Фронта Образования ИНФО-проект. Школа программирования Coding Craft: http://codingcraft.ru/.
- 7. Портал Life-prog: http://life-prog.ru/.
- 8. Сайт РАН Институт Вычислительной математики. http://www.inm.ras.ru/
- 9. Сервер министерства высшего образования www.informika.ru;
 - Описание материально-технической базы
 - Компьютерный класс (15 ПК): оборудование в собственности.
 - Программное обеспечение: Scilab (свободная лицензия, код доступа не требуется).

11 Язык преподавания

Русский