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Abstract

This work is motivated by an intention to make the theory of
bigravity more comprehensible. Bigravity is a modification of the
General Relativity (GR), maybe even the most natural one because it
is based on the equivalence principle. The Hamiltonian formalism in
tetrad variables transparently demonstrates the structure of bigravity

1 Introduction

Lagrangian of the bigravity is a sum of two GR Lagrangians formed of two
spacetime metrics fµν , gµν and a potential of their interaction discovered by
de Rham, Gabadadze, and Tolley [1, 2]. The potential of bigravity simpli-
fies when the action is expressed through tetrads [3], not metrics. Both two
sets of lapse-and-shift variables appear linearly in the Hamiltonian and can
be treated as Lagrange multipliers at primary constraints. As the theory
is explicitly invariant only under diagonal diffeomorphisms of the spacetime
manifold and diagonal rotations of the spatial triads, the number of arbitrary
Lagrange multipliers is 7 (1+3+3) the same is the number of the first class
constraints. Other Lagrange multipliers provide 10 second class constraints.
The compatibility of the primary second class constraints with the dynamical
equations provides 10 new equations, where 6 of them are the so-called tetrad
symmetry conditions, and the other 4 are equivalent to the second class con-
straints of the metric approach. One of these 4 constraints accompanied by a

∗This article is based on the talk given at the Fourth Zeldovich meeting, an international
conference in honor of Ya. B. Zeldovich held in Minsk, Belarus on September 7–11, 2020.
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corresponding primary constraint serves to remove the ghost degree of free-
dom. Three other constraints together with their (fixed by the compatibility
conditions) Lagrange multipliers serve to supplement the two Hamiltonian-
like constraints. This reorganization of constraints reproduces the results of
the celebrated Hassan-Rosen transform [4]. From the geometrical viewpoint,
it is interesting to notice that three bilinear combinations of the pair of triads
corresponding to the pair of spatial metrics appear in the dRGT potential.
One of these combinations is symmetric and therefore can be treated as a
new (hybrid) spatial metric. Its role in the coupling to matter fields requires
a detailed investigation. It is interesting to mention the correspondence of
this combination to the spatial components of the geometric mean of the two
spacetime metrics introduced by Kocic [5].

Below for spacetime coordinate indices running from 0 to 3, we use small
Greek letters; for internal indices running from 1 to 3, we use small Latin
letters from the beginning of the alphabet. For spatial indices small letters
from the middle of the alphabet are used, for internal indices running from
0 to 3 the capital Latin letters are used. We deal with metrics that have
common timelike and spacelike vectors. The variables related to the metric
gµν are marked by an upper bar.

2 Lagrangian, potential, and variables

From the mathematical point of view, GR looks much simpler when expressed
in the geometrical language, i.e. in variables having an evident geometrical
meaning. This is true also for the bigravity. The Lagrangian of bigravity is
equal to the sum of two copies of the GR Lagrangian minus an interaction
term called the potential

L(f) =
1

16πG(f)

√

−ffµνR(f)
µν + L(f)

M (ψA, fµν), (1)

L(g) =
1

16πG(g)

√
−ggµνR(g)

µν + L(g)
M (φA, gµν), (2)

L = L(f) + L(g) − m2

2κ

√
−gU(fµν , gµν). (3)

The diffeomorphism invariance requires

U(fµν , gµν) = U(invariants of Y), where Y = g−1f ≡ gµαfαν . (4)

2



The first formulation of the GR in the Hamiltonian language was given by
Dirac [6]. If we apply Arnowitt-Deser-Misner [7] (ADM) variables (lapses
N , N̄ , shifts N i, N̄ i and induced metrics ηij , γij) and introduce a basis for
spacetime tensors (nα, eαi ) introduced by Kuchar̆ and York [10] (formed by
one of metrics, let it be fµν) we obtain

Y = g−1f = u−2

(

−[nµnν ] ui[nµeνi]
uj[eµj nν ] (−uiuj + u2γij) [eµi eνj ]

)

, (5)

where

u =
N̄

N
, ui =

N̄ i −N i

N
(6)

A standard longstanding problem of the nonlinear massive gravity (and also
bigravity) was the Boulware-Deser [8] ghost arising due to nonlinearity of√−gU in the auxiliary variable u. The potential proposed by de Rham,
Gabadadze, and Tolley [1, 2] (dRGT) is as follows

U =

4
∑

n=0

βnen(X), X =
√
Y, Y = ||gµαfαν ||, (7)

where the symmetric polynomials of matrix X
µ
ν =

√

||g−1f ||µ
ν
written through

traces of it and its powers are the following

e0 = 1,

e1 = TrX,

e2 =
1

2

(

(TrX)2 − TrX2
)

,

e3 =
1

6

(

(TrX)3 − 3TrXTrX2 + 2TrX3
)

,

e4 = detX.

Then a solution of the theory equations is given should give two spacetime
metric tensors and all the matter fields.

3 Kuchar̆’s notations

The Hamiltonian formalism of GR becomes more transparent when given in
the embedding variables, i.e. as a dynamics of hypersurfaces. The suitable
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variables are the induced metric γij and the external curvature tensor Kij .
In the ADM variables, the time components of the metric g0µ are replaced
by the lapse and shift variables N,N i that connects the close hypersurfaces.
In the Kuchar̆ approach [9] (see also York [10]) N,N i are components of the
4-vector connecting observer positions on the closest hypersurfaces

Nα ≡ ∂Xα

∂t
= Nnα +N ieαi , (8)

where two coordinate frames Xα and (τ, xi) are used. The embedding func-
tions eα(τ, xi) provide one-to-one map Xα = eα(τ, xi). The three tangential
to a hypersurface vectors are eαi = ∂eα

∂xi . In bigravity we have two unit normal
vectors they are denoted as nα, n̄α, and they satisfy equations:

gµνn̄
µn̄ν = −1, gµνn̄

µeνi = 0,

fµνn
µnν = −1, fµνn

µeνi = 0.

The canonical variables are the two induced metrics ηij = fµνe
µ
i e

ν
j , γij =

gµνe
µ
i e

ν
j and the two external curvature tensors Kij = −eαi nα;βe

β
j , and K̄ij =

−eαi n̄α;βe
β
j . Two spacetime metrics in their local bases (n̄α, eαi ), and (nα, eαi )

are
gµν = −n̄µn̄ν + γij ē

i
µē

j
ν , fµν = −nµnν + ηije

i
µe

j
ν . (9)

4 Tetrads

The metric tensor is not a unique choice of a dynamical variable. There
is another possibility of the geometrical description provided by a field of
orthonormal bases or tetrads [11]. In bigravity, we have two such bases
FA
µ , E

A
µ given at each spacetime point. The potential now can be expressed

explicitly, i.e. it is possible to find a matrix square root of the mixed tensor
Y
α
β = gαµfµβ. But the physical content of the metric and tetrad formulations

is the same only if symmetry conditions for the tetrads are fulfilled. The
vierbeins (or tetrads) are the square root of metric

g = ETE, gµν = EµAE
A
ν , (10)

g−1 = E−1(E−1)T , gµν = E
µ
AE

Aν , (11)

Then we can extract the square root of the matrix Y

X =
√

g−1f =
√

E−1(E−1)TF TF = E−1F T , (12)
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if symmetry conditions are fulfilled

(FE−1)T = FE−1. (13)

There is a diagonal Lorentz symmetry generated by

L+
AB =

(

0 L+
0b

L+
a0 L+

ab

)

,

We can sacrifice L+
a0 to achieve the null tetrad gauge for EAµ

E0µ = n̄µ. (14)

Then the dynamical variables occur triads eai . But we can apply this gauge
only to one tetrad as the potential is invariant under diagonal tetrad rotations

F ′A
µ = ΛA

BF
B
µ , E ′A

µ = ΛA
BE

B
µ . (15)

In the article by Hinterbichler and Rosen [3], it was suggested to parametrize
the additional degrees of freedom by adding an arbitrary boost transforma-
tion to the triad basis. The parametrization of a boost

ΛA
B =

(

ε εvb
εva Pa

b

)

, Pa
b = δab +

ε2

ε+ 1
vavb ,

allows taking the second tetrad FAµ in the form

FA
µ = ΛA

BFB
µ (16)

where FB
µ is a second tetrad given in the time gauge. In this work, we take

parameters of this boost as canonical variables and introduce new momenta
conjugate to them. This is different from the approach taken in H-R. There-
fore we get 21 pairs of canonically conjugate variables:

(eai, π
i
a), (f̃ai,Π

i
a), (ṽi,Π

i
0), (17)

where
f̃ai = Pabfbi, ṽi = f̃aiva. (18)

The other variables are Lagrange multipliers N,N i, u, ui, λ+ab, λ
−

ab, λ
a. The

Hamiltonian is as follows

H =

∫

d3x

[

N
(

R′′ + uS ′ + uiSi

)

+N iRi + λ+abL
+
ab + λ−abL

−

ab + λaLa0

]

. (19)
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It is necessary to compare the approach used here with the earlier work by
Alexandrov [12] and the preceding article [13]. There the formalism was de-
veloped for the two general tetrads and two general connections. The spatial
triads appear as a solution to the second class constraints. These second
class constraints arise because of applying the first order Palatini formalism
where connections and tetrads are initially treated as independent variables.
A common feature of both approaches is that the tetrad symmetry conditions
appear as a consequence of the compatibility of the primary constraints with
the Hamiltonian dynamics. But this is not the case for the earlier work [13].
The tetrad approach was also considered in article [14].

5 Implicit functions used in metric approach

It is impossible to express the dRGT potential as an explicit function of the
metric variables, therefore implicit functions are used. After extracting lapses
and shifts of both metrics and making a special transform of variables [4] it
is possible to express the potential as a function of 3 × 3-matrix Di

j. This
matrix is to be symmetrical

Dij = Dji, (20)

and satisfy the following equation

γij = Di
kv

kDj
mv

m + ε−2DikD
j

k . (21)

The above equations forDi
j follow from Eq.(5) when the Hassan-Rosen trans-

form of variables

ui = vi + uDi
jv

j, ε−1 =
√

1− ηijvivj. (22)

is applied. We start from a definition of Di
j by the following formula

X =
√
Y = εu−1

(

−[nµnν ] vi[nµeνi]
vj[eµj nν ] (−vivj + ε−2uDij) [eµi eνj ]

)

. (23)

After squaring matrix X and comparing the result with the previously ob-
tained expression for matrix Y we obtain equations (21). Therefore Di

j

depends on ηij , γij and vi, indices of Di
j are moved up and down by ηij

and its inverse ηij . After heavy calculations, it occurred possible to find ex-
pressions for derivatives of Di

j with respect to canonical coordinates ηij , γij .
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This allowed to calculate Poisson brackets of the potential with the other
terms of the Hamiltonian and to get the constraints algebra [15].

In another approach [16, 17] the potential as a whole is considered as
an implicit function of lapses, shifts, and induced metrics. It is shown that
if this function fulfills the homogeneous Monge-Ampere equation in lapses
and shifts then the theory is free of the Boulware-Deser ghost. Also, it is
supposed that the rank of the corresponding matrix is equal to three. The
important properties of the implicit solutions of the Monge-Ampere equation
are given in [18].

By putting to zero variables ni, and so discarding the Hassan-Rosen trans-
formation, but preserving Di

j one may arrive at the precursor theory for the
Minimal Theory of Bigravity [19].

6 Algebra of constraints and degrees of free-

dom

In this section, we present the results of the Poisson brackets calculations.
With the tetrad variables, we obtain that the Hassan-Rosen transform can
be written as follows

ui = vi + uv̄i, (24)

where
vi = f iava, v̄i = eiava. (25)

Then we introduce
S = S ′ + v̄iSi, (26)

R = R′′ + viSi + uS. (27)

For the 1st class constraints R,Ri, L
+
ab we get

{R(x),R(y)} =
(

ηikRk + uuiS
)

(x)δ,i(x, y)− (x↔ y) ,

{Ri(x),R(y)} = R(x)δ,i(x, y) + u,iSδ(x, y),
{Ri(x),Rj(y)} = Rj(x)δ,i(x, y)−Ri(y)δ,j(y, x),

and

{L+
ab(x), L

+
cd(y)} =

(

δacL
+
db + δbcL

+
ad − δadL

+
cb − δbdL

+
ac

)

δ(x, y)

{Ri(x), L
+
ab(y)} = L+

ab(x)δ,i(x, y) ≈ 0,

{R(x), L+
ab(y)} = 0.
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For the 2nd class constraints S, Ω results are the following

{S(x),S(y)} = v̄iS(x)δ,i(x, y)− v̄iS(y)δ,i(y, x),
{R(x),S(y)} = (ui + uv̄i)S(x)δ,i(x, y) +

(

u(v̄iS),i − Ω
)

δ(x, y),

{S(x),Ω(y)} 6= 0.

The Hassan-Rosen transform may also be written as follows

N̄ i = N i +Nvi + N̄ v̄i, (28)

The constraints L−

ab, Gcd, La0 are second class as we get

{L−

ab(x), Gcd(y)} =
[

δacz(bd) − δadz(cb) − δbcz(ad) + δbdz(ca)
]

× δ(x, y) 6= 0,

{La0(x),Si(y)} = ef̃bi [β1δbae0(z) + β2(δbae1(z)− zba)

+β3(δbae2(z) + zbczca − zzba)] δ(x, y) 6= 0.

where

zab = eaif̃
ib = zba, f̃ ib = P−1

ab f
ia, P−1

ab = δab −
ε

ε+ 1
vavb. (29)

7 Conclusion

The results of this work are summarized in Table 1 where the number of
gravitational degrees of freedom is calculated according to the formula

DOF =
1

2
(n− 2nf.c. − ns.c.) . (30)

The advantages of the proposed approach are the following. The potential
(and so the Hamiltonian) is linear in the lapses and shifts N , N̄ , N i, N̄ i. All
the nondynamical functions are Lagrange multipliers. The tetrad symmetry
conditions follow from the Dirac procedure. The first three of them appear
as secondary constraints, and the other three as a fixing of the Lagrangian
multiplier ui. Therefore the Hassan-Rosen transform is derived, and not
postulated. Neither implicit functions, nor Dirac brackets are involved in
the calculations. The geometrical meaning of the coefficients standing in the
algebra of constraints is uncovered.
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BiGrav (general) BiGrav (dRGT) BiGrav (vierbein)

(q, p) (γij, π
ij), (ηij,Π

ij) (γij, π
ij), (ηij,Π

ij) (eia, π
ia), (f̃ia,Π

ia)
(pi,Π

i
0)

n 24 24 42
1st class R,Ri R,Ri R,Ri, L

+
ab

nf.c. 4 4 7
2nd class — S,Ω S,Ω, L−

ab, Gab

La0,Si

ns.c. 0 2 14
DoF 8 7 7

Table 1: The variables, constraints, and degrees of freedom.

We hope that the obtained results may be applied to the Cauchy problem,
the perturbation theory, the numerical bigravity, the canonical quantization
of bigravity.

The author is most grateful to the Organizing Committee of the IV Zel-
dovich Meeting for the opportunity to participate in this exciting conference
and to the participants for their attention and discussion.
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