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In this paper a (2þ 1)-dimensional model with four-fermion interactions is investigated in the case when
one spatial coordinate is compactified and the space topology takes the form of an infinite cylinder,
R1 ⊗ S1. It is supposed that the system is embedded in real three-dimensional space and that a magnetic
flux Φ crosses the transverse section of the cylinder. The model includes four-fermion interactions both in
the fermion-antifermion (or chiral) and fermion-fermion (or superconducting) channels. We then study
phase transitions that depend on the chemical potential μ and the flux Φ in the leading order of the large-N
expansion technique, where N is the number of fermion fields. It is demonstrated that for arbitrary relations
between coupling constants in the chiral and superconducting channels, superconductivity appears in the
system at rather high values of μ (the length L of the circumference S1 is fixed). Moreover, it is shown that
at sufficiently small values of μ the growth of the magnetic flux Φ leads to a periodical reentrance of the
chiral symmetry breaking or superconducting phase, depending on the values of μ and the coupling
constants.
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I. INTRODUCTION

It is well known that quantum field theories with four-
fermion interactions (4FQFT) play an essential role in
several branches of modern physics. In the case of (3þ 1)-
dimensional QCD, effective theories of this type are used in
order to describe the low-energy physics of light mesons [1]
as well as phase transitions in compact stars and in hadronic
matter under the influence of various external conditions,
such as temperature, magnetic fields, etc. (see, e.g., the
review papers [2–7]). Low-dimensional 4FQFTs also find
important applications in condensed matter physics. For
example, (1þ 1)-dimensional 4FQFTs, known as Gross-
Neveu models [8], are suitable for the description of
polyacetylene-like systems [9]. In addition, due to their
renormalizability, asymptotic freedom, and spontaneous
breaking of chiral symmetry, Gross-Neveu-type models can
be used as a laboratory for the qualitative simulation of
specific properties of QCD. In particular, such effects of
dense baryonic matter as color superconductivity (SC)
[10–12], charged pion condensation [13,14], and dynami-
cal chiral symmetry breaking [15,16] were investigated in
the simplified case of (1þ 1)-dimensional Gross-Neveu
models.
Nowadays of special interest are (2þ 1)-dimensional

4FQFTs. These models mimic the main properties of
corresponding (3þ 1)-dimensional models. Thus, in the
framework of (2þ 1)-dimensional models, investigations
have involved such corresponding phenomena as dynami-
cal symmetry breaking [8,17–21], color SC [22], and

QCD-motivated phase diagrams [23]. Other examples of
this kind are spontaneous chiral symmetry breaking
induced by external magnetic/chromomagnetic fields
[this effect was studied for the first time also in terms of
(2þ 1)-dimensional 4FQFT [24]] as well as gravitational
catalysis of chiral symmetry breaking [25]. It is worth
mentioning that these theories are also useful in developing
new QFT techniques like, e.g., the optimized perturbation
theory [23,26].
However, there is yet another and more physical moti-

vation for studying (2þ 1)-dimensional 4FQFTs. It is
based on the fact that many condensed matter systems
have a (quasi)planar structure. Among these systems are the
high-Tc cuprate and iron superconductors [27], and the
one-atom thick layer of carbon atoms, or graphene, [28,29].
Thus, many properties of these planar physical systems can
be explained on the basis of various (2þ 1)-dimensional
models, including the 4FQFTs (see, e.g., Refs. [30–36] and
references therein). In particular, the influence of such
external factors as temperature, chemical potential, and
magnetic field on the metal-to-insulator phase transition
and quantum Hall effect in planar fermionic systems has
been investigated in the framework of 4FQFTs (see, e.g.,
Refs. [31,32]). Another example is SC of planar condensed
matter systems, which can also be treated qualitatively in
terms of (2þ 1)-dimensional 4FQFTs [34,35].
The (2þ 1)-dimensional 4FQFT model of Refs. [34,35]

describes a competition between two processes: chiral
symmetry breaking (excitonic pairing) and SC (Cooper
pairing). Its structure is a direct generalization of the known
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(1þ 1)-dimensional 4FQFT model of Chodos et al.
[10,11]—which remarkably mimics the temperature T
and chemical potential μ phase diagram of real QCD—
to the case of (2þ 1)-dimensional spacetime. We recall that
in Refs. [10,11], in order to avoid the prohibition on Cooper
pairing as well as spontaneous breaking of a continuous
U(1) symmetry in (1þ 1)-dimensionalmodels (knownas the
Mermin-Wagner-Coleman no-go theorem [37]), the consid-
eration was performed in the leading order of the 1=N
technique, i.e., in the large-N limit, whereN is the number of
fermion fields. In this case, quantum fluctuations, which
would otherwise destroy a long-range order corresponding to
spontaneous symmetry breaking, are suppressed by 1=N
factors. For the same reason in the (2þ 1)-dimensional
4FQFTmodel of Refs. [34,35] and in the case of finite values
ofN, spontaneous breaking of continuous U(1) symmetry is
allowed only at zero temperature, i.e., it is forbidden at
T > 0. One possible way to enable the investigation of
superconducting phase transitions in the framework of this
(2þ 1)-dimensional model at T > 0 is to use the constraint
N → ∞, as was done in Refs. [10,11].
The present paper is devoted to the investigation of the

competition between excitonic and Cooper pairing of
fermionic quasiparticles in the framework of the above-
mentioned (2þ 1)-dimensional 4FQFT model under the
influence of a chemical potential μ [34,35]. In contrast to
those papers, where a flat two-dimensional space with
trivial topology R2 was used, we now suppose that the
space topology is nontrivial and has the form R1 ⊗ S1,
where the length of the circumference S1 is denoted by L.
Thus, in our consideration one spatial coordinate is
compactified. [Note that (1þ 1)- and (3þ 1)-dimensional
4FQFT models of SC with compactified spatial coordinates
were already studied in Refs. [11,38].] We hope that the
investigation of a rather special four-fermionic system on a
cylindrical surface will be useful for the understanding of
physical processes taking place, e.g., in carbon nanotubes.
The paper is organized as follows. In Sec. II the (2þ 1)-

dimensional 4FQFT model, which describes interactions in
the fermion-antifermion (or chiral) and fermion-fermion (or
superconducting) channels, is presented. Here the unrenor-
malized thermodynamic potential (TDP) of the model is
obtained in the leading order of the large-N expansion
technique (see the Sec. II A). In Sec. II B a renormalization-
group-invariant expression for the TDP is obtained whose
global minimum point (GMP) provides us with chiral and
Cooper pair condensates. The phase portrait of the model is
presented in Fig. 1 in the case L ¼ ∞, μ ¼ 0. In Sec. III a
renormalization-group-invariant expression for the TDP is
obtained in the case L ≠ ∞. Here the system is considered
as an infinite cylinder, embedded in real three-dimensional
space. In addition, it is supposed that there is a magnetic
flux Φ through the transverse section of the cylinder. In
Sec. IV, typical phase diagrams (Figs. 2 and 3) of the model
at L ≠ ∞ and μ ¼ 0 are presented at 0 ≤ ϕ < 1=6 and

1=6 < ϕ < 1=2, respectively, where ϕ ¼ Φ=Φ0 (Φ0 is the
elementary magnetic field flux). Here a duality between
chiral symmetry breaking and SC phenomena is observed.
Moreover, it is shown that, depending on the relation
between coupling constants, a periodical reentrance of
chiral symmetry breaking or superconducting phases (as
well as periodic symmetry restoration) occurs with growing
values of the magnetic flux Φ. The phase structure of the
model at L ≠ ∞ and μ ≠ 0 is investigated in Sec. V. It is

FIG. 1. The ðg1; g2Þ phase portrait of the model at μ ¼ 0 and
L ¼ ∞. The notations I, II, and III mean the symmetric, CSB, and
SC phases, respectively. At g1;2 < 0 the line l is defined by the
relation l≡ fðg1; g2Þ∶g1 ¼ g2g.

FIG. 2. The ðg1; g2Þ phase portrait of the model at μ ¼ 0 and
fixed values of L ≠ ∞ and ϕ, where 0 ≤ ϕ < 1=6. We use the
same designations of the phases as in Fig. 1. In the regions
g1;2 < 0 and g1;2 > gc, where gc is presented in Eq. (33), the line l
is defined by the relation l≡ fðg1; g2Þ∶g1 ¼ g2g.
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established here that if there is an arbitrary small attractive
interaction in the fermion-fermion channel, then it is
possible to generate the SC phenomenon in the system
by increasing the chemical potential. Some related techni-
cal problems of our consideration are relegated to three
Appendices.

II. THE CASE L → ∞

A. The model and its thermodynamic potential

Our investigation is based on a (2þ 1)-dimensional
4FQFT model with massless fermions belonging to a
fundamental multiplet of the auxiliary OðNÞ flavor group.
Its Lagrangian describes the interaction in both the scalar
fermion-antifermion (or chiral) and scalar difermion (or
superconducting) channels [10]:

L ¼
XN
k¼1

ψ̄k½γνi∂ν þ μγ0�ψk þ
G1

N

�XN
k¼1

ψ̄kψk

�
2

þG2

N

�XN
k¼1

ψT
kCψk

��XN
j¼1

ψ̄ jCψ̄T
j

�
; ð1Þ

where μ is the fermion number chemical potential. As noted
above, all fermion fields ψk (k ¼ 1;…; N) form a funda-
mental multiplet of the OðNÞ group. Moreover, each field
ψk is a four-component Dirac spinor (the symbol T denotes
the transposition operation). The quantities γν (ν ¼ 0, 1, 2)
and γ5 are matrices in the four-dimensional spinor space.
Moreover, C≡ γ2 is the charge-conjugation matrix. The
algebra of the γ matrices as well as their particular

representation are given in Appendix A. Clearly, the
Lagrangian L is invariant under transformations from the
internal OðNÞ group, which is introduced here in order to
make it possible to perform all of the calculations in the
framework of the nonperturbative large-N expansion
method. Physically more interesting is that the model (1)
is invariant under transformations from U(1) group dem-
onstrating fermion number conservation ψk → expðiαÞψk
(k ¼ 1;…; N), and that there is a symmetry of the
model under a discrete γ5 chiral transformation: ψk →
γ5ψk (k ¼ 1;…; N).
The “linearized” (i.e., with only quadratic powers of

fermionic fields) version of the Lagrangian (1) that contains
auxiliary scalar bosonic fields σðxÞ, πðxÞ, ΔðxÞ, Δ�ðxÞ has
the following form:

~L ¼ ψ̄k½γνi∂ν þ μγ0 − σ�ψk −
Nσ2

4G1

−
N
4G2

Δ�Δ

−
Δ�

2
½ψT

kCψk� −
Δ
2
½ψ̄kCψ̄T

k �: ð2Þ

(Here and in what follows the summation over repeated
indices k ¼ 1;…; N is implied.) Clearly, the Lagrangians
(1) and (2) are equivalent, as can be seen by using the Euler-
Lagrange equations of motion for scalar bosonic fields,
which take the form

σðxÞ ¼ −2
G1

N
ðψ̄kψkÞ; ΔðxÞ ¼ −2

G2

N
ðψT

kCψkÞ;

Δ�ðxÞ ¼ −2
G2

N
ðψ̄kCψ̄T

k Þ: ð3Þ

One can easily see from Eq. (3) that the (neutral) field σðxÞ
is a real quantity, i.e., ðσðxÞÞ† ¼ σðxÞ (the superscript
symbol † denotes the Hermitian conjugation), but the
(charged) difermion scalar fields ΔðxÞ and Δ�ðxÞ are
Hermitian-conjugated complex quantities, so ðΔðxÞÞ† ¼
Δ�ðxÞ and vice versa. Clearly, all of the fields (3) are
singlets with respect to the OðNÞ group.1 If the scalar
difermion field ΔðxÞ has a nonzero ground-state expect-
ation value, i.e., hΔðxÞi ≠ 0, then the Abelian fermion
number U(1) symmetry of the model is spontaneously
broken down and SC appears in the system. However, if
hσðxÞi ≠ 0 then a chiral-symmetry-breaking (CSB) phase
is realized spontaneously in the model.
We begin our investigation of the phase structure of the

four-fermion model (1) using the equivalent semibosonized
Lagrangian (2). In the leading order of the large-N (mean-
field) approximation, the effective action Seffðσ; π;Δ;Δ�Þ
of the model under consideration is expressed by means of
the path integral over fermion fields:

FIG. 3. The ðg1; g2Þ phase portrait of the model at μ ¼ 0 and
fixed values of L ≠ ∞ and ϕ, where 1=6 < ϕ < 1=2. We use the
same designations of the phases as in Fig. 1. The line l is defined
by the relation l≡ fðg1; g2Þ∶g1 ¼ g2g. The critical value gc is
presented in Eq. (33).

1Note that the ΔðxÞ field is a flavor OðNÞ singlet, since the
representations of this group are real.
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expðiSeffðσ;Δ;Δ�ÞÞ ¼
Z YN

l¼1

½dψ̄ l�½dψ l� exp
�
i
Z

~Ld3x
�
;

where

Seffðσ;Δ;Δ�Þ ¼ −
Z

d3x

�
N
4G1

σ2ðxÞ þ N
4G2

ΔðxÞΔ�ðxÞ
�

þ ~Seff : ð4Þ

The fermion contribution to the effective action, i.e., the
term ~Seff in Eq. (4), is given by

expði ~SeffÞ ¼
Z YN

l¼1

½dψ̄ l�½dψ l� exp
�
i
Z

½ψ̄kðγνi∂ν þ μγ0

− σÞψk −
Δ�

2
ðψT

kCψkÞ −
Δ
2
ðψ̄kCψ̄T

k Þ�d3x
�
:

ð5Þ
The ground-state expectation values hσðxÞi, hΔðxÞi, and
hΔ�ðxÞi of the composite bosonic fields are determined by
the saddle-point equations,

δSeff

δσðxÞ ¼ 0;
δSeff

δΔðxÞ ¼ 0;
δSeff

δΔ�ðxÞ ¼ 0: ð6Þ

From now on we suppose that the quantities hσðxÞi, hΔðxÞi,
and hΔ�ðxÞi do not depend on space coordinates, i.e.,
hσðxÞi ¼ M, hΔðxÞi ¼ Δ, and hΔ�ðxÞi ¼ Δ�, where
M;Δ;Δ� are constant quantities. In fact, the quantities
M, Δ, and Δ� are coordinates of the GMP of the TDP
ΩðM;Δ;Δ�Þ. In the leading order of the large-N expansion
it is defined by the following expression:Z

d3xΩðM;Δ;Δ�Þ

¼ −
1

N
SefffσðxÞ;ΔðxÞ;Δ�ðxÞgjσðxÞ¼M;ΔðxÞ¼Δ;Δ�ðxÞ¼Δ� ;

which givesZ
d3xΩðM;Δ;Δ�Þ

¼
Z

d3x

�
M2

4G1

þ ΔΔ�

4G2

�
þ i
N
ln

�Z YN
l¼1

½dψ̄ l�½dψ l�

× exp

�
i
Z

d3x

�
ψ̄kDψk

−
Δ
2
ðψT

kCψkÞ −
Δ�

2
ðψ̄kCψ̄T

k Þ
���

; ð7Þ

where D ¼ γρi∂ρ þ μγ0 −M. To proceed, let us first point
out that without loss of generality the quantities Δ;Δ�

might be considered as real.2 So, in the following we will
suppose that Δ ¼ Δ� ≡ Δ, where Δ is already a real
quantity. Then, in order to find a convenient expression
for the TDP it is necessary to invoke Appendix B of
Ref. [35], where a path integral similar to Eq. (7) was
evaluated. Taking this technique into account, we obtain the
following expression for the zero-temperature, T ¼ 0, TDP
of the 4FQFT model (1):

ΩðM;ΔÞ ¼ M2

4G1

þ Δ2

4G2

þ i
Z

d3p
ð2πÞ3 ln½ðp

2
0 − ðEþÞ2Þðp2

0 − ðE−Þ2Þ�;

ð8Þ

where the notation ΩðM;ΔÞ is now used for the TDP
ΩðM;Δ;Δ�Þ at Δ ¼ Δ� ≡ Δ, ðE�Þ2 ¼ E2 þ μ2þ
Δ2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2Δ2 þ μ2E2

p
, and E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

1 þ p2
2

p
.

Obviously, the function ΩðM;ΔÞ is invariant under each
of the transformations M → −M, Δ → −Δ, and μ → −μ.
Hence, without loss of generality, it is sufficient to restrict
ourselves by the constraints M ≥ 0, Δ ≥ 0, and μ ≥ 0 and
to investigate the properties of the TDP (8) just in this
region. Using a rather general formula,

Z
∞

−∞
dp0 lnðp0 − AÞ ¼ iπjAj; ð9Þ

[see, e.g., Appendix B of Ref. [14]; the relation (9) is true
up to an infinite term independent of the real quantity A], it
is possible to reduce the expression (8) to the following
one:

ΩðM;ΔÞ≡ΩunðM;ΔÞ

¼ M2

4G1

þ Δ2

4G2

−
Z

d2p
ð2πÞ2 ðE

þ þ E−Þ: ð10Þ

Note that the following asymptotic expansion is valid:

Eþ þ E− ¼ 2j~pj þM2 þ Δ2

j~pj þOð1=j~pj3Þ; ð11Þ

where j~pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2

p
. Hence the integral term in Eq. (10)

is ultraviolet divergent, and ΩðM;ΔÞ is an unrenormalized
quantity. Hence, in Eq. (10) and below we use the
equivalent notation ΩunðM;ΔÞ for it.

2Otherwise, phases of the complex quantities Δ;Δ� might be
eliminated by an appropriate transformation of fermion fields in
the path integral (7).
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B. Renormalization procedure and phase
structure at μ ¼ 0

To renormalize the TDP (10) it is useful to rewrite this
quantity in the following way:

ΩunðM;ΔÞ ¼ M2

4G1

þ Δ2

4G2

−
Z

d2p
ð2πÞ2 ðE

þjμ¼0 þ E−jμ¼0Þ

−
Z

d2p
ð2πÞ2 ðE

þ þ E− − Eþjμ¼0 − E−jμ¼0Þ;

ð12Þ

where

Eþjμ¼0 þ E−jμ¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2 þ ðM þ ΔÞ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2 þ ðM − ΔÞ2

q
:

Since the leading terms of the asymptotic expansion (11) do
not depend on μ, it is clear that the last integral in Eq. (12) is
a convergent one. Other terms in Eq. (12) form the
unrenormalized TDP VunðM;ΔÞ (effective potential) at
μ ¼ 0,

VunðM;ΔÞ ¼ M2

4G1

þ Δ2

4G2

−
Z

d2p
ð2πÞ2

×
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j~pj2þðMþΔÞ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2þðM−ΔÞ2

q 

;

ð13Þ

i.e., the expression (12) has the following equivalent form:

ΩunðM;ΔÞ

¼VunðM;ΔÞ−
Z

d2p
ð2πÞ2

×
	
EþþE−−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2þðMþΔÞ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2þðM−ΔÞ2

q 

:

ð14Þ

Thus, to renormalize the TDP (10)–(14) it is sufficient to
remove the ultraviolet divergence from the effective poten-
tial VunðM;ΔÞ [Eq. (13)]. This procedure is performed as
in, e.g., Ref. [35] and is based on the special Λ dependence
of the bare coupling constants G1 and G2 [here Λ is the
cutoff parameter of the integration region in Eq. (13),
jp1j < Λ and jp2j < Λ],

1

4G1

≡ 1

4G1ðΛÞ
¼ 2Λ lnð1þ ffiffiffi

2
p Þ

π2
þ 1

2πg1
;

1

4G2

≡ 1

4G2ðΛÞ
¼ 2Λ lnð1þ ffiffiffi

2
p Þ

π2
þ 1

2πg2
; ð15Þ

where g1;2 are finite and Λ-independent model parameters
with dimension of inverse mass. Moreover, since the bare
couplings G1 and G2 do not depend on a normalization
point, the same property is also valid for g1;2. As a result,
upon cutting the integration region in Eq. (13) and using
there the substitution (15), it becomes possible to obtain in
the limit Λ → ∞ the following renormalized expression
VrenðM;ΔÞ for the effective potential of the model in
vacuum (for more details see Ref. [35]):

VrenðM;ΔÞ≡ ΩrenðM;ΔÞjμ¼0

¼ M2

2πg1
þ Δ2

2πg2
þ ðM þ ΔÞ3

6π
þ jM − Δj3

6π
:

ð16Þ

It should also be mentioned that the TDP (16) is a
renormalization-group-invariant quantity. Investigating
the behavior of the GMP of the TDP (16) with the coupling
constants g1 and g2, it is possible to establish the corre-
sponding phase portrait of the model (1) at L ¼ ∞ and
μ ¼ 0 [35] (see Fig. 1). In this figure the notations I, II, and
III mean the symmetric, CSB, and SC phases, respectively.
In the symmetric phase the GMP of the TDP (16) lies at the
point ðM ¼ 0;Δ ¼ 0Þ, and the initial symmetry of
the model (1) remains intact. In the phase II the GMP is
of the form ðM ¼ −1=g1;Δ ¼ 0Þ, which implies sponta-
neous breaking of the γ5 chiral symmetry in the ground state
of the system. Finally, in the superconducting phase III the
GMP looks like ðM ¼ 0;Δ ¼ −1=g2Þ. As a result, the U(1)
symmetry of the model is spontaneously broken down.
Clearly, if the cutoff parameter Λ is fixed, then the phase
structure of the model can be described in terms of the bare
coupling constants G1; G2 instead of the finite quantities
g1; g2. Indeed, let us first introduce a critical value of the
couplings, Gc ¼ π2

8Λ lnð1þ ffiffi
2

p Þ. Then, as it follows from Fig. 1

and Eq. (15), atG1 < Gc andG2 < Gc the symmetric phase
I of the model occurs. If G1 > Gc, G2 < Gc (G1 < Gc,
G2 > Gc), the CSB phase II (the SC phase III) is realized.
Finally, let us suppose that both G1 > Gc and G2 > Gc. In
this case, at G1 > G2 (G1 < G2) we again have the CSB
phase II (the SC phase III).
The fact that it is possible to renormalize the effective

potential of the initial model (1) in the leading order of the
large-N expansion is the reflection of a more general
property of (2þ 1)-dimensional theories with 4FQFT.
Indeed, it is well known that in the framework of “naive”
perturbation theory in coupling constants these models are
not renormalizable. However, as was proven in Ref. [18] in
the framework of the nonperturbative large-N technique,
these models are renormalizable in each order of the 1=N
expansion.
Now, it is evident that a renormalized expression

ΩrenðM;ΔÞ for the TDP of the model looks like
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ΩrenðM;ΔÞ

¼VrenðM;ΔÞ−
Z

d2p
ð2πÞ2

×
	
EþþE− −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2þðMþΔÞ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2þðM−ΔÞ2

q 

:

ð17Þ

Just this quantity should be used in order to establish the
phase structure of the model at L ¼ ∞ and μ ≠ 0.

III. TDP IN THE CASE L ≠ ∞

In the present section we start the investigation of the
difermion and fermion-antifermion condensations in the
framework of the (2þ 1)-dimensional 4FQFT model (1),
when one of two spatial coordinates is compactified.3 In
this case, the two-dimensional space has a nontrivial
topology of the form R1 ⊗ S1. Without loss of generality,
it is supposed here that only the y axis is compactified and
fermion fields satisfy boundary conditions of the form (the
x coordinate is not restricted)

ψkðt; x; yþ LÞ ¼ ei2πϕψkðt; x; yÞ; ð18Þ

where L is the length of the circumference S1

and k ¼ 1;…; N.
The physical situation in our consideration can be

treated in the following way. We suppose that in real

three-dimensional space there is a two-dimensional surface
on which the physical system, described by the Lagrangian
(1), is located. The surface is then rolled into an infinite
cylinder R1 ⊗ S1 and, in addition, a homogeneous external
magnetic field B parallel to the cylinder axis is switched on.
So the magnetic flux Φ ¼ πr2B pervades the transverse
section of the cylinder [here r is the radius of the circum-
ference S1, r ¼ L=ð2πÞ]. In this case one can imagine that
the magnetic phase ϕ in Eq. (18) is the quantity ϕ ¼ Φ=Φ0,
where Φ0 ¼ 2π=e is the elementary magnetic field flux.
This interpretation of the quantity ϕ was taken, e.g., in
Ref. [40] and is used in the present paper.4 For the sake of
brevity, in the following we use the name “magnetic flux”
for both the genuine magnetic flux Φ and for the
ratio ϕ ¼ Φ=Φ0.
In this case, to obtain the (unrenormalized) TDP

Ωun
LϕðM;ΔÞ of the initial system, one must simply replace

the integration over the p2 momentum in Eqs. (12)–(14) by
an infinite series, using the rule

Z
∞

−∞

dp2

2π
fðp2Þ →

1

L

X∞
n¼−∞

fðpnϕÞ;

pnϕ ¼ 2π

L
ðnþ ϕÞ; n ¼ 0;�1;�2;…: ð19Þ

So we have from Eq. (14) that

Ωun
LϕðM;ΔÞ ¼ Vun

LϕðM;ΔÞ − 1

L

Z
dp1

2π

X∞
n¼−∞

�
Eþ
nLϕ þ E−

nLϕ

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ

4π2ðnþ ϕÞ2
L2

þ ðM þ ΔÞ2
r

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ

4π2ðnþ ϕÞ2
L2

þ ðM − ΔÞ2
r �

; ð20Þ

where

E�
nLϕ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ

4π2ðnþ ϕÞ2
L2

þM2 þ μ2 þ Δ2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2Δ2 þ μ2

�
p2
1 þ

4π2ðnþ ϕÞ2
L2

þM2

�svuut ð21Þ

and Vun
LϕðM;ΔÞ is analogously obtained from Eq. (13) by using the transformation rule (19),

Vun
LϕðM;ΔÞ ¼ M2

4G1

þ Δ2

4G2

−
1

L

Z
dp1

2π

X∞
n¼−∞

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ

4π2ðnþ ϕÞ2
L2

þ ðM þ ΔÞ2
r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ

4π2ðnþ ϕÞ2
L2

þ ðM − ΔÞ2
r �

:

ð22Þ

3Note that in Refs. [39–42] a phase structure of a more simple special case of the (2þ 1)-dimensional model (1), i.e., at G2 ¼ 0, was
investigated in spaces with different nontrivial topologies. The impact of finite-size effects, the curvature of space, etc. on the chiral
symmetry breaking was also considered in Ref. [43] in spaces of different dimensions on the basis of the zeta-function regularization
method.

4In real physical systems the boundary conditions (18) might slightly change. For example, for carbon nanotubes the phase in the
boundary conditions (18) is changed, ϕ → αþ ϕ, where α ¼ 0 for metallic nanotubes and α ¼ �1=3 for semiconducting ones [44]
(here ϕ is still the quantity ϕ ¼ Φ=Φ0).
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It is clear from Eqs. (20)–(22) that the TDP is a periodic function with unit period with respect to the magnetic flux ϕ. So in
many respects it is enough to study the TDP (20) only at −1=2 ≤ ϕ ≤ 1=2. In Appendix C we show that Eq. (22) is equal to

Vun
LϕðM;ΔÞ ¼ VunðM;ΔÞ þ 1

πL3

X
�

X∞
n¼1

expð−nLjM � ΔjÞ
n3

ðnLjM � Δj þ 1Þ cosð2πnϕÞ; ð23Þ

where VunðM;ΔÞ is the unrenormalized effective potential of the model in vacuum, i.e., at μ ¼ 0 and L ¼ ∞ [see Eq. (13)
or, alternatively, Eq. (B3)]. Since the remaining integral and series terms in both Eq. (20) and Eq. (23) are convergent, it is
clear that in order to obtain the finite renormalized expressionΩren

LϕðM;ΔÞ for the TDP at L ≠ ∞, one should simply remove
the ultraviolet divergency from the vacuum effective potential VunðM;ΔÞ, using the method of Sec. II B. As a result, we
have from Eqs. (20) and (23) that

Ωren
LϕðM;ΔÞ ¼ VrenðM;ΔÞ þ 1

πL3

X
�

X∞
n¼1

expð−nLjM � ΔjÞ
n3

ðnLjM � Δj þ 1Þ cosð2πnϕÞ 21

−
1

L

Z
dp1

2π

X∞
n¼−∞

�
Eþ
nLϕ þ E−

nLϕ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ

4π2ðnþ ϕÞ2
L2

þ ðM þ ΔÞ2
r

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ

4π2ðnþ ϕÞ2
L2

þ ðM − ΔÞ2
r �

;

ð24Þ

where VrenðM;ΔÞ is given in Eq. (16). Moreover, one can
see from Eq. (24) that in addition to the constraintsM ≥ 0,
Δ ≥ 0, and μ ≥ 0 [see the comments just after Eq. (8)] it is
enough to accept, without loss of generality, the restriction
0 ≤ ϕ ≤ 1=2 as well.5

IV. PHASE STRUCTURE AT L ≠ ∞ AND μ ¼ 0

In this case the TDP (24) has a simpler form,

Vren
LϕðM;ΔÞ≡Ωren

LϕðM;ΔÞjμ¼0

¼ VrenðM;ΔÞþ 1

πL3

X
�

X∞
n¼1

expð−nLjM�ΔjÞ
n3

× ðnLjM�Δj þ 1Þcosð2πnϕÞ: ð25Þ

Numerical investigations show that a GMP of the TDP (25)
cannot be located at the point of the form ðM ≠ 0;Δ ≠ 0Þ,
i.e., at least one of the quantitiesM andΔ is equal to zero in
the GMP of the effective potential. So, in order to establish
the GMP ðM0;Δ0Þ of the effective potential (25), it is
sufficient to compare the least values of the simpler
functions, F1ϕðMÞ and F2ϕðΔÞ, which are the reductions
of the effective potential Vren

LϕðM;ΔÞ on the M and Δ axes,
respectively. Evidently,

F1ϕðMÞ≡ Vren
LϕðM;Δ ¼ 0Þ

¼ M2

2πg1
þM3

3π
þ 2

πL3

X∞
n¼1

expð−nLMÞ
n3

× ðnLM þ 1Þ cosð2πnϕÞ; ð26Þ

F2ϕðΔÞ≡ Vren
LϕðM ¼ 0;ΔÞ

¼ Δ2

2πg2
þ Δ3

3π
þ 2

πL3

X∞
n¼1

expð−nLΔÞ
n3

× ðnLΔþ 1Þ cosð2πnϕÞ: ð27Þ

Let us find the GMP M0 of the function F1ϕðMÞ as well as
its properties depending on the external parameters L, ϕ,
and g1. For this we need the stationary, or gap, equation,

∂F1ϕðMÞ
∂M ¼ 0

¼ M
π
fðMÞ

≡M
π

�
1

g1
þM þ 1

L
ln½1þ e−2LM − 2e−LM cosð2πϕÞ�

�
:

ð28Þ

It is easy to see that fðMÞ from Eq. (28) is a monotonically
increasing function at M ≥ 0. Moreover, fð∞Þ ¼ ∞.
Hence, apart from a trivial solution M ¼ 0, there exists
a single nonzero solution M0 ≠ 0 of Eq. (28) if and only if
fð0Þ < 0, i.e., at

5This restriction is a consequence of the symmetry of the TDP
(24) with respect to the transformation ϕ → −ϕ.
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1

g1
þ 2

L
ln½2 sinðπϕÞ� < 0: ð29Þ

It is evident that just under the condition (29) the point
M0 ≠ 0 is a GMP of the function F1ϕðMÞ. Solving
Eq. (28), one can find in this case that

M0ðLÞ ¼
1

L
arccosh

�
cosð2πϕÞ þ e−L=g1

2

�
; ð30Þ

where arccoshðxÞ ¼ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
Þ is the function

defined at x ≥ 1. If the condition (29) is not satisfied, then
the stationary equation (28) has only a trivial solution
M ¼ 0, which is the GMP of the effective potential (26) in
this case.
Similar properties are valid for the function (27).

Namely, if

1

g2
þ 2

L
ln½2 sinðπϕÞ� < 0; ð31Þ

then its GMP is at the nonzero point

Δ0ðLÞ ¼
1

L
arccosh

�
cosð2πϕÞ þ e−L=g2

2

�
: ð32Þ

However, if the constraint (31) is violated, then we have a
least value of the function (27) at the trivial point Δ ¼ 0.
Now, comparing the minima of the functions (26) and

(27), it is possible to find both the genuine GMP of the TDP
(25) and its dependence on the external parameters. As a
result, one can establish the phase structure of the model.
By this way, we have obtained the ðg1; g2Þ phase diagrams
of the model at arbitrary fixed values of L ≠ ∞ and
magnetic flux ϕ (see Figs. 2 and 3). In the phases I, II,
and III of these figures the GMP of the TDP (25) has the
form (0, 0), ðM0ðLÞ; 0Þ, and ð0;ΔðLÞÞ, respectively [the
gapsM0ðLÞ andΔ0ðLÞ are defined by the relations (30) and
(32), respectively]. So in phase I the initial symmetries of
the model remain intact, in phase II the chiral symmetry is
broken down, whereas in phase III there is SC in the ground
state. Due to the periodicity property of the model with
respect to ϕ, our investigations are restricted to the region
0 ≤ ϕ ≤ 1=2. Moreover, it turns out that for different values
of ϕ from this region we have quite different phase
diagrams. Indeed, Fig. 2 presents the ðg1; g2Þ phase
structure at 0 ≤ ϕ < 1=6, whereas the phase diagram in
Fig. 3 corresponds to magnetic flux values from the region
1=6 < ϕ ≤ 1=2. The quantity gc in these figures is the
solution of the equation fð0Þ ¼ 0 with respect to the
coupling constant g1 [the function fðxÞ is defined in
Eq. (28)],

gc ¼ −
L

2 ln½2 sinðπϕÞ� : ð33Þ

On the lines g1 ¼ gc or g2 ¼ gc there are second-order
phase transitions from the chiral symmetry breaking phase
II or superconducting phase III to the symmetrical phase I.
In contrast, the line l of these figures corresponds to a first-
order phase transitions between phases II and III.
Moreover, it is clear from Eq. (33) that at ϕ → 1=6� we
have gc → ∓∞, i.e., gc is not a finite quantity. So the phase
diagram in the case ϕ ¼ 1=6 cannot be represented by
Figs. 2 and 3. Note that in this particular case the ðg1; g2Þ
phase structure of the model looks formally like in Fig. 1,
where L ¼ ∞. However, it is evident that the order
parameters, or gaps hσi and hΔi, corresponding to these
particular cases of the phase structure of the model are quite
different. Indeed, in the case of Fig. 1 with L ¼ ∞ we have
hσi ¼ −1=g1 and hΔi ¼ −1=g2, whereas in the case L ≠ ∞
and ϕ ¼ 1=6 the gaps are presented by the relations (30)
or (32).
It follows from Eq. (33) that the critical coupling

constant gc varies in the interval 0 < gc < ∞ when
0 < ϕ < 1=6. However, at 1=6 < ϕ ≤ 1=2 we have the
following constraint on the critical value gc:
−∞ < gc ≤ g0 ≡ −L=½2 ln 2�. Taking into account these
observations, with the help of Figs. 2 and 3 it is possible to
construct the evolution of the phase structure of the model
with respect to a magnetic flux ϕ at arbitrary fixed values of
L ≠ ∞ and coupling constants g1 and g2. Indeed, if the
point ðg1; g2Þ belongs to the strips g0 ≡ −L=½2 ln 2� < g1 <
0 and/or g0 < g2 < 0, then, as it is clear from Figs. 2 and 3,
we have CSB or SC phases for all values of ϕ. Moreover, at
each point of these strips the phase structure of the model is
not changed vs ϕ. This means that in this case the order
parameters (30) or (32) are positively defined and periodic
functions vs ϕ [see Fig. 4, where the graphic of the order
parameter M0ðLÞ vs ϕ is presented for g1 ¼ −L= ln 6, i.e.,
at g0 < g1 < 0].

0.6

0.8

1

1.2

–1 0 1 2 3 4

FIG. 4. The behavior of the gap M0ðLÞ vs ϕ at g1 ¼ −L= ln 6
and arbitrary fixed values of g2 > 0 or g2 < g1.
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However, the situation is different for points from other
regions of the ðg1; g2Þ plane, i.e., when a point ðg1; g2Þ
belongs to one of the following regions:
(i) fðg1;g2Þ∶g1>0;g2>0g, (ii) fðg1; g2Þ∶g1 > 0; g2 < g0g,
(iii) fðg1; g2Þ∶g1 < g0; g2 < g0g, and (iv) fðg1; g2Þ∶
g1 < g0; g2 > 0g. Indeed, in this case at ϕ ¼ 0 the initial
symmetry is spontaneously broken down at any finite
values of L (see the phase portrait of Fig. 2 with
gc ¼ 0). Then, with increasing value of ϕ the gap of the
CSB or SC phase decreases and at some critical value ϕc,
where 0 < ϕc < 1=2, becomes zero. At this moment there
is a restoration by a second-order phase transition of the
initial symmetry of the model. Note that for all values of the
magnetic flux ϕ such that ϕc < ϕ < 1 − ϕc the system is in
its symmetric phase I. After that, at ϕ ¼ 1 − ϕc there again
appears a phase with broken symmetry, and a gap increases
in the interval 1 − ϕc < ϕ < 1. In the following the process
is periodically repeated. In Fig. 5 the behavior of the gap
Δ0ðLÞ vs ϕ is shown, when ðg1; g2Þ belongs to the above-
mentioned region (i), where in addition we suppose that
g2 ¼ 2L and g1 < g2 (in this case, at ϕ ¼ 0 the SC phase is
realized in the model). For such a choice of the coupling
constants we have ϕc ≈ 0.13.
Hence, we see that if the coupling constants g1 and g2 are

fixed inside one of the strips g0 < g1 < 0 and/or
g0 < g2 < 0, where g0 ¼ −L=½2 ln 2�, then for all values
of the magnetic flux ϕ the symmetry of the ground state of
the model is the same as at ϕ ¼ 0 (i.e., the phase structure
of the model does not change vs ϕ). However, in this case
there is an oscillation of the gap vs ϕ (see Fig. 4 for an
illustration). For the rest of the points in the ðg1; g2Þ plane,
an increase of the external magnetic flux ϕ along the axis of
a cylinder is accompanied by the periodical reentering of
the CSB or SC phase [which depends on the point ðg1; g2Þ]
as well as with the periodical reentering of a symmetry
restoration. Such effects, if they exist, can be observed
experimentally.
Finally, we would like to point out another aspect of the

phase structure of the model (1). It is clear from Eqs. (16)
and (25) that at μ ¼ 0 the TDP of the system is invariant
with respect to the following simultaneous permutation of
the coupling constants and dynamical variables, which is
usually called the duality transformation D [12,15]:

D∶ g1 ⟷ g2; M ⟷ Δ: ð34Þ

Suppose now that at some fixed particular values of the
model parameters, i.e., at ðg1 ¼ A; g2 ¼ BÞ, the GMP of
the TDP (25) lies at the point ðM ¼ M0;Δ ¼ Δ0Þ. Since
the TDP is invariant with respect to the duality trans-
formationD [Eq. (34)], it is clear that the permutation of the

coupling constant values, i.e., at ðg1 ¼ B; g2 ¼ AÞ, moves
the GMP of the TDP to the point ðM ¼ Δ0;Δ ¼ M0Þ. In
particular, if at the point ðg1 ¼ A; g2 ¼ BÞ the supercon-
ducting (the chiral symmetry breaking) phase is realized,
then at the point ðg1 ¼ B; g2 ¼ AÞ the chiral symmetry
breaking (the superconducting) phase of the model must be
arranged. As is easily seen from Figs. 1–3, just this property
of the phase structure is fulfilled for each figure. Hence, a
knowledge of the phase structure of the model (1) at
g1 < g2 is sufficient for constructing the phase structure at
g1 > g2 by taking into account the invariance of the TDP
under the duality transformationD [Eq. (34)]. Thus, there is
a duality correspondence between chiral symmetry break-
ing and SC in the framework of the model (1) at μ ¼ 0. It is
also necessary to remark that in Refs. [12,15] the CSB-SC
duality was established in the framework of (1þ 1)-
dimensional models with a continuous chiral symmetry
group. In contrast, in the present consideration the duality
correspondence is a property of the model (1) with a
discrete γ5 chiral symmetry.

V. PHASE STRUCTURE AT L ≠ ∞ AND μ ≠ 0

Numerical investigations show again that a GMP of the
TDP (24) cannot be located at a point of the form
ðM ≠ 0;Δ ≠ 0Þ, i.e., at least one of the quantities M and
Δ is equal to zero in the GMP of the TDP (24). So, in order
to establish the GMP ðM0;Δ0Þ of this TDP, it is sufficient to
compare the least values of the simpler functions, F 1ϕðMÞ
and F 2ϕðΔÞ, which are the reductions of the TDP
Ωren

LϕðM;ΔÞ [see the relation (24)] on the M and Δ axes,
respectively. Evidently,

F 1ϕðMÞ≡Ωren
LϕðM;Δ ¼ 0Þ ¼ F1ϕðMÞ − 2

L

Z
dp1

2π

X∞
n¼−∞

	
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
nLϕ þM2

q 

Θ
	
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
nLϕ þM2

q 

; ð35Þ
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FIG. 5. The behavior of the gap Δ0ðLÞ vs ϕ at g2 ¼ 2L and
arbitrary fixed values of 0 < g1 < g2.
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F 2ϕðΔÞ≡Ωren
LϕðM ¼ 0;ΔÞ ¼ F2ϕðΔÞ −

1

L

Z
dp1

2π

X∞
n¼−∞

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEnLϕ þ μÞ2 þ Δ2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEnLϕ − μÞ2 þ Δ2

q
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
nLϕ þ Δ2

q 

; ð36Þ

where ΘðxÞ is the Heaviside step function, F1ϕðMÞ and
F2ϕðΔÞ are presented in Eqs. (26) and (27), respectively,
and EnLϕ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ 4π2ðnþ ϕÞ2=L2

p
. Investigating and

comparing the behavior of the GMPs of the functions
(35) and (36) vs the external parameters L, μ, g1, g2, and ϕ,
it is possible to obtain the phase structure of the model. Of
course, in reality we have studied numerically the functions

(35) and (36). The results of our analysis for typical values
of the magnetic flux ϕ and chemical potential μ (and for
arbitrary fixed values of the quantity L) are presented in
Figs. 6–8. For example, in Figs. 6 and 7 the ðg1; g2Þ phase
structure of the model is presented, respectively, at ϕ ¼ 0
and ϕ ¼ 1=12. For both figures the chemical potential
values are selected to be the same, i.e., Lμ ¼ 0, Lμ ¼ 0.2,

FIG. 6. The ðg1; g2Þ phase portrait of the model at ϕ ¼ 0, with arbitrary fixed values of L and for different values of chemical potential
μ. (a) The case Lμ ¼ 0. (b) The case Lμ ¼ 0.2. (c) The case Lμ ¼ 0.4. (d) The case Lμ ¼ 0.6. We use the same designations of the
phases as in Fig. 1.
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Lμ ¼ 0.4, Lμ ¼ 0.6. In Fig. 8 one can see the ðg1; g2Þ phase
portraits of the model at ϕ ¼ 1=3 and for the following set
of chemical potential values: Lμ ¼ 0, Lμ ¼ 0.6, Lμ ¼ 1.2,
Lμ ¼ 1.8. In any case, on the basis of these phase portraits
it is easy to see that with the growth of the chemical
potential μ (at fixed ϕ and L values) the phase III gradually
fills the whole ðg1; g2Þ plane (with the exception of the line
g2 ¼ 0). Namely, it is clear from Figs. 6–8 that at an
arbitrary fixed point ðg1; g2Þ (note, that g2 ≠ 0) of a phase
diagram there exists a critical value μc of the chemical
potential such that at μ > μc the superconducting phase is
realized in the system.
In particular, if initially at μ ¼ 0 we have a SC ground

state, then μc ¼ 0. This means that in this case SC is
maintained in the model at arbitrary values of μ. The typical
behavior of the superconducting gap Δ0 vs μ in this case is
depicted in Fig. 9 for g1 ¼ −2L, g2 ¼ −L, and at ϕ ¼ 0 [as

it is clear from Fig. 6(a) that for these values of the coupling
constants we have SC at μ ¼ 0]. However, if at μ ¼ 0 the
point ðg1; g2Þ is arranged in the CSB or symmetrical phase,
then μc > 0. The typical behavior of gapsM0 andΔ0 in this
case is represented by Fig. 10, where the competition
between the CSB and SC order parameters, M0 and Δ0, is
depicted at g1 ¼ −L, g2 ¼ −2L, and ϕ ¼ 0. It is clear from
this figure that there is a critical value μc ≈ 0.49=L of the
chemical potential, where a first-order phase transition
occurs from the CSB (at μ < μc) to the SC phase
(at μ > μc).
In the previous section we have pointed out that for some

fixed points ðg1; g2Þ and μ ¼ 0 there can appear in the
model the reentering of the CSB or SC phases vs magnetic
flux ϕ. It is clear from Figs. 6–8 that the reentrance effect
takes place for rather small fixed nonzero values of μ as
well. Indeed, let us suppose that Lμ ¼ 0.6 and ðg1; g2Þ is

FIG. 7. The ðg1; g2Þ phase portrait of the model at ϕ ¼ 1=12, with arbitrary fixed values of L and for different values of chemical
potential μ. (a) The case Lμ ¼ 0. (b) The case Lμ ¼ 0.2. (c) The case Lμ ¼ 0.4. (d) The case Lμ ¼ 0.6. We use the same designations of
the phases as in Fig. 1.
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fixed in such a way, e.g., that g1=L ¼ g2=L ¼ −3. Then at
ϕ ¼ 0 and ϕ ¼ 1=12 we have the SC phase III at this point
of the ðg1; g2Þ phase diagram [see Figs. 6(d) and 7(d),
respectively]. However, at ϕ ¼ 1=3 the symmetric phase I
is already realized at this point [see Fig. 8(b)]. Since all
physical quantities of the model are periodical vs ϕ, one can
conclude that at the above-mentioned fixed point ðg1; g2Þ
and at Lμ ¼ 0.6 there is both a periodical restoration of the
initial symmetry and a periodical reentering of the SC
phase vs ϕ. Since at rather large values of μ and for arbitrary
values of the magnetic flux ϕ the ðg1; g2Þ phase structure of
the model looks like the phase diagram of Fig. 8(d) with an
extremely narrow phase II, it is necessary to note that the
reentrance effect of the model disappears at sufficiently
high values of the chemical potential.

VI. SUMMARY AND CONCLUSIONS

In this paper we have studied the competition between
chiral and superconducting condensations in the framework
of the (2þ 1)-dimensional 4FQFT model (1), when one of
the spatial coordinates is compactified and the two-
dimensional space has R1 ⊗ S1 topology (the length of
the circumference S1 is L). We consider this R1 ⊗ S1 space
as a cylinder embedded in the real flat three-dimensional
space. In addition, we supposed that there is an external
magnetic field flux Φ through a transverse section of the
cylinder [as a result, the boundary conditions (24) are
fulfilled, where ϕ ¼ Φ=Φ0]. The model describes inter-
actions both in the fermion-antifermion (or chiral) and
superconducting difermion (or Cooper pairing) channels

FIG. 8. The ðg1; g2Þ phase portrait of the model at ϕ ¼ 1=3, with arbitrary fixed values of L and for different values of chemical
potential μ. (a) The case Lμ ¼ 0. (b) The case Lμ ¼ 0.6. (c) The case Lμ ¼ 1.2. (d) The case Lμ ¼ 1.8. We use the same designations of
the phases as in Fig. 1.
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with bare couplingsG1 andG2, respectively. Moreover, it is
chirally and U(1) invariant (the last group corresponds to
conservation of the fermion number or electric charge of
the system). To avoid the ban on the spontaneous breaking
of continuous symmetry in (2þ 1)-dimensional field the-
ories, we considered the phase structure of our model in the
leading order of the large-N technique, i.e., in the limit
N → ∞, where N is a number of fermion fields, as was
done in the (1þ 1)-dimensional analog of the model
[10,11]. The temperature is zero in our consideration.
The case L ¼ ∞, μ ¼ 0: First of all we have investigated

the TDP of the model in the flat two-dimensional space
with trivial topology, i.e., at L ¼ ∞, with zero chemical
potential μ ¼ 0. In this case the phase portrait is presented
in Fig. 1 in terms of the renormalization-group-invariant
finite coupling constants g1 and g2, defined in Eq. (15).
Each point ðg1; g2Þ of this diagram corresponds to a definite
phase. For example, at g1;2 > 0, i.e., at sufficiently small
values of the bare coupling constantsG1;2 (see the comment
at the end of Sec. II B), both the discrete γ5 chiral and U(1)
symmetries are not violated, and the system is in the
symmetric phase, etc.
The case L ≠ ∞, μ ¼ 0: In this case there are two

qualitatively different situations depending on the value of
the magnetic flux ϕ. Indeed, if 0 ≤ ϕ < 1=6, then the
typical ðg1; g2Þ phase portrait of the model is presented in
Fig. 2, but if 1=6 < ϕ < 1=2, then the typical phase portrait
of the model is drawn in Fig. 3. In particular, it follows from
Fig. 2 that at ϕ ¼ 0 [in this case the quantity gc from
Eq. (33) is equal to zero] we have in the region g1;2 > 0 a
spontaneous breaking of the chiral γ5 or U(1) symmetry (in
contrast, if L ¼ ∞ then the initial symmetry remains intact
in this region). So, the compactification of the space, i.e., at
L ≠ ∞, induces spontaneous breaking of the symmetry.
Note also that all physical quantities of the model are

periodic functions vs magnetic flux ϕ (see, e.g., Figs. 4 and
5, where the behavior of the CSB and SC gaps are

presented). It is clear from Fig. 5 that for some points of
the ðg1; g2Þ plane an increasing magnetic flux ϕ is accom-
panied by the periodical reentrance of the SC (or CSB)
phase. We expect that this effect can be observed in
condensed matter experiments. Such a response of physical
systems on the action of external magnetic field
perpendicular to a direction of compactified coordinate
is contrasted with the case, when magnetic field is directed
along the compactified coordinate. In the last case the
reentrance effect is absent [45].
Finally, it is necessary to note that at finite L and μ ¼ 0

there is a duality between chiral symmetry breaking and SC
[see the relation (34)]. This means that if at the point
ðg1; g2Þ of a phase diagram the CSB phase (the SC phase) is
realized, then at the point ðg2; g1Þ one should have the SC
phase (the CSB phase). Just this property of the model is
evident from the phase diagrams of Figs. 2 and 3.
The case L ≠ ∞, μ ≠ 0: The ðg2; g1Þ phase portraits of

the model are presented in this case in Figs. 6–8 for the
following representative values of the magnetic flux:
ϕ ¼ 0, ϕ ¼ 1=12, and ϕ ¼ 1=3, respectively. Moreover,
in each figure four phase diagrams are drawn for different
values of the chemical potential μ. For example, in
Figs. 6 and 7 the chemical potential takes values such that
Lμ ¼ 0, Lμ ¼ 0.2, Lμ ¼ 0.4, and Lμ ¼ 0.6, respectively.
Comparing the phase diagrams corresponding to different
values of μ at each fixed ϕ, it is possible to establish the
following interesting property of the model: at each fixed
point of the ðg1; g2Þ plane (such that g2 ≠ 0) and with fixed
L ≠ ∞ the growth of the chemical potential leads to the
appearance of SC in the system. (The same property of the
chemical potential in the framework of the model (1) was
established earlier in our paper [35] at L ¼ ∞, even
at nonzero temperature.) In particular, this means that if
at μ ¼ 0 we have a SC ground state in the model; then, at

FIG. 9. The behavior of the gap Δ0 vs μ at g1 ¼ −2L, g2 ¼ −L,
ϕ ¼ 0 and an arbitrary fixed value of L. (In this case M0 ≡ 0
vs μ).

µµ

FIG. 10. The behavior of the gaps Δ0 and M0 vs μ at g1 ¼ −L,
g2 ¼ −2L, ϕ ¼ 0 and an arbitrary fixed value of L. The first-
order phase transition between the CSB and SC phases occurs at
μc ≈ 0.49=L.

INTERPLAY BETWEEN SUPERCONDUCTIVITY AND … PHYSICAL REVIEW D 91, 105024 (2015)

105024-13



arbitrary values of μ > 0 the SC persists in the system as
well. Moreover, if at μ ¼ 0 we have in the model a CSB or
symmetrical ground state, then there is a critical value
μc > 0 of the chemical potential, such that at μ > μc the
initial CSB or symmetrical ground state is destroyed and
the SC appears. In other words, if in the physical system of
fermions described by the Lagrangian (1) and located on a
cylindrical surface there is an arbitrary small attractive
interaction in the fermion-fermion channel, then it is
possible to generate the SC phenomenon in the system
by increasing the chemical potential.
It is necessary to note that the reentrance of the CSB or

SC phase vs ϕ is also possible in the model at rather small
nonzero values of μ. However, in this case the reentrance
effect disappears at sufficiently high values of the chemical
potential (see the discussion at the end of Sec. V).
Since the results of the paper are valid for arbitrary

values of L, 0 < L < ∞, we hope that our investigations
can shed new light on physical phenomena taking place in
nanotubes as well. In particular, taking into account the
remarks made in footnote 4, it is possible to relate the phase
diagrams of Figs. 6 and 8 to physical processes in metallic
and semiconducting carbon nanotubes (with zero external
magnetic flux), respectively.

APPENDIX A: ALGEBRA OF THE γ MATRICES
IN THE CASE OF THE SO(2,1) GROUP

The two-dimensional irreducible representation of the
three-dimensional Lorentz group SO(2,1) is realized by the
following 2 × 2 ~γ matrices:

~γ0 ¼ σ3 ¼
�
1 0

0 −1

�
; ~γ1 ¼ iσ1 ¼

�
0 i

i 0

�
;

~γ2 ¼ iσ2 ¼
�

0 1

−1 0

�
; ðA1Þ

which act on two-component Dirac spinors. They have the
properties

Trð~γμ ~γνÞ ¼ 2gμν; ½~γμ; ~γν� ¼ −2iεμνα ~γα;

~γμ ~γν ¼ −iεμνα ~γα þ gμν; ðA2Þ
where gμν ¼ gμν ¼ diagð1;−1;−1Þ; ~γα ¼ gαβ ~γβ, and
ε012 ¼ 1. There is also the relation

Trð~γμ ~γν ~γαÞ ¼ −2iεμνα: ðA3Þ

Note that the definition of chiral symmetry is slightly
unusual in three dimensions [spin is here a pseudoscalar
rather than a (axial) vector]. The formal reason is simply
that there exists no other 2 × 2 matrix that anticommutes
with the Dirac matrices ~γν which would allow the intro-
duction of a γ5 matrix in the irreducible representation. The
important concept of “chiral” symmetries and their break-
down by mass terms can nevertheless be realized also in the

framework of (2þ 1)-dimensional quantum field theories
by considering a four-component reducible representation
for Dirac fields. In this case the Dirac spinors ψ have the
following form:

ψðxÞ ¼
�

~ψ1ðxÞ
~ψ2ðxÞ

�
; ðA4Þ

where ~ψ1; ~ψ2 are two-component spinors. In the reducible
four-dimensional spinor representation one deals with
(4 × 4) γ matrices: γμ ¼ diagð~γμ;−~γμÞ, where ~γμ are given
in Eq. (A1). One can easily show that (μ; ν ¼ 0, 1, 2)

TrðγμγνÞ ¼ 4gμν; γμγν ¼ σμν þ gμν;

σμν ¼ 1

2
½γμ; γν� ¼ diagð−iεμνα ~γα;−iεμνα ~γαÞ: ðA5Þ

In addition to the Dirac matrices γμðμ ¼ 0; 1; 2Þ there exist
two other matrices γ3, γ5 which anticommute with all
γμðμ ¼ 0; 1; 2Þ and with themselves,

γ3 ¼
�
0; I

I; 0

�
; γ5 ¼ γ0γ1γ2γ3 ¼ i

�
0; −I
I; 0

�
; ðA6Þ

where I is the unit 2 × 2 matrix.

APPENDIX B: PROPER-TIME
REPRESENTATION OF THE TDP (13)

Let us derive another expression for the unrenormalized
TDP VunðM;ΔÞ [which is equivalent to Eq. (13)] by using
the Schwinger proper-time method. Here and in the next
appendix we use the general relation

ffiffiffiffi
A

p
¼ 1ffiffiffi

π
p

Z
∞

0

ds
s2

ð1 − e−s
2AÞ; ðB1Þ

where A > 0 and the improper integral on the right-hand
side is obviously a convergent one. Supposing that
A ¼ A� ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j~pj2 þ ðM � ΔÞ2
p

, one can use the relation
(B1) in Eq. (13) and find

VunðM;ΔÞ

¼ M2

4G1

þ Δ2

4G2

þ 1ffiffiffi
π

p
Z

d2p
ð2πÞ2

�X
�

Z
∞

0

ds
s2

e−s
2½p2

1
þp2

2
þðM�ΔÞ2�

�
;

ðB2Þ

where we have omitted an unessential infinite constant,
which does not depend on the dynamical variables M and
Δ. [For this reason the proper-time integral in Eq. (B2), and
below in Eq. (B3), is divergent.] Integrating in Eq. (B2)
over p1 and p2, we finally obtain the following proper-time
expression for the unrenormalized TDP (13):
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VunðM;ΔÞ ¼ M2

4G1

þ Δ2

4G2

þ 1

4π3=2

X
�

Z
∞

0

ds
s4

e−s
2ðM�ΔÞ2 :

ðB3Þ

APPENDIX C: DERIVATION OF EQ. (23) FOR
THE THERMODYNAMIC POTENTIAL

Let us denote by An;� the following expression:

An;� ¼ p2
1 þ

4π2ðnþ ϕÞ2
L2

þ ðM � ΔÞ2: ðC1Þ

Then the TDP (22) has the form

Vun
LϕðM;ΔÞ ¼ M2

4G1

þ Δ2

4G2

−
1

L

Z
dp1

2π

X∞
n¼−∞

�X
�

ffiffiffiffiffiffiffiffiffi
An;�

p �
:

ðC2Þ

To proceed, it is very convenient to use for
ffiffiffiffiffiffiffiffiffi
An;�

p
in (C2)

the proper-time representation (B1). Then, up to an infinite
constant independent of the dynamical variables M and Δ,
we have

Vun
LϕðM;ΔÞ ¼ M2

4G1

þ Δ2

4G2

þ 1

L
ffiffiffi
π

p
X
�

Z
dp1

2π

X∞
n¼−∞

Z
∞

0

ds
s2

e−s
2½p2

1
þðM�ΔÞ2þ4π2

L2
ðnþϕÞ2�: ðC3Þ

First of all, let us sum over n in Eq. (C3), taking into account the well-known Poisson summation formula,

X∞
n¼−∞

e−s
24π2

L2
ðnþϕÞ2 ¼ L

2π

ffiffiffi
π

p
s

X∞
n¼−∞

e−
n2L2

4s2 ei2πnϕ ¼ L
2π

ffiffiffi
π

p
s

�
1þ 2

X∞
n¼1

e−
n2L2

4s2 cosð2πnϕÞ
�
: ðC4Þ

Then, after integration in the obtained expression over p1, we have

Vun
LϕðM;ΔÞ ¼ VunðM;ΔÞ þ 1

2π3=2

X
�

X∞
n¼1

Z
∞

0

ds
s4

e−s
2ðM�ΔÞ2−n2L2

4s2 cosð2πnϕÞ; ðC5Þ

where VunðM;ΔÞ is the proper-time representation of the effective potential of the model in the vacuum (B3). Taking into
account the relation

Z
∞

0

dxxν−1e−
a
x−bx ¼ 2

�
a
b

�
ν=2

Kνð2
ffiffiffiffiffiffi
ab

p
Þ;

it is possible to integrate over s in Eq. (C5),

Vun
LϕðM;ΔÞ ¼ VunðM;ΔÞ þ 1

2π3=2

X
�

X∞
n¼1

�
2jM � Δj

nL

�
3=2

K−3
2
ðnLjM � ΔjÞ cosð2πnϕÞ; ðC6Þ

where KνðzÞ is the third order modified Bessel function, and

K−3
2
ðzÞ ¼ K3

2
ðzÞ ¼ −

ffiffiffiffiffi
πz
2

r
d
dz

�
e−z

z

�
¼

ffiffiffiffiffi
πz
2

r
e−z

zþ 1

z2
: ðC7Þ

Using the relation (C7) in Eq. (C6), we obtain the expression (23) for the unrenormalized effective potential at L ≠ ∞ and
μ ¼ 0.

INTERPLAY BETWEEN SUPERCONDUCTIVITY AND … PHYSICAL REVIEW D 91, 105024 (2015)

105024-15



[1] D. Ebert and M. K. Volkov, Z. Phys. C 16, 205 (1983); D.
Ebert, H. Reinhardt, and M. K. Volkov, Prog. Part. Nucl.
Phys. 33, 1 (1994).

[2] M. Buballa, Phys. Rep. 407, 205 (2005); M. Buballa and
S. Carignano, Prog. Part. Nucl. Phys. 81, 39 (2015).

[3] E. J. Ferrer, V. de la Incera, and C. Manuel, Proc. Sci., JHW
2005 (2006) 022.

[4] R. Gatto and M. Ruggieri, Lect. Notes Phys. 871, 87 (2013).
[5] A. A. Andrianov, D. Espriu, and X. Planells, Eur. Phys. J. C

73, 2294 (2013); 74, 2776 (2014).
[6] B. Hiller, A. A. Osipov, A. H. Blin, and J. da Providencia,

SIGMA 4, 024 (2008).
[7] J. O. Andersen, W. R. Naylor, and A. Tranberg, arXiv:

1411.7176.
[8] D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235

(1974).
[9] A. Chodos and H. Minakata, Phys. Lett. A 191, 39

(1994); H. Caldas, J. L. Kneur, M. B. Pinto, and R. O.
Ramos, Phys. Rev. B 77, 205109 (2008).

[10] A. Chodos, H. Minakata, F. Cooper, A. Singh, and W. Mao,
Phys. Rev. D 61, 045011 (2000).

[11] L. M.Abreu,A. P. C.Malbouisson, and J.M. C.Malbouisson,
Phys. Rev. D 83, 025001 (2011); Europhys. Lett. 90, 11001
(2010).

[12] D. Ebert, T. G. Khunjua, K. G. Klimenko, and V. C.
Zhukovsky, Phys. Rev. D 90, 045021 (2014).

[13] D. Ebert, K. G. Klimenko, A. V. Tyukov, and V. C.
Zhukovsky, Phys. Rev. D 78, 045008 (2008); D. Ebert
and K. G. Klimenko, Phys. Rev. D 80, 125013 (2009); D.
Ebert, N. V. Gubina, K. G. Klimenko, S. G. Kurbanov, and
V. C. Zhukovsky, Phys. Rev. D 84, 025004 (2011).

[14] N. V. Gubina, K. G. Klimenko, S. G. Kurbanov, and V. C.
Zhukovsky, Phys. Rev. D 86, 085011 (2012).

[15] M. Thies, Phys. Rev. D 68, 047703 (2003); 90, 105017
(2014).

[16] O. Schnetz, M. Thies, and K. Urlichs, Ann. Phys.
(Amsterdam) 314, 425 (2004); G. Basar, G. V. Dunne,
and M. Thies, Phys. Rev. D 79, 105012 (2009); C. Boehmer
and M. Thies, Phys. Rev. D 80, 125038 (2009).

[17] G.W. Semenoff and L. C. R. Wijewardhana, Phys. Rev.
Lett. 63, 2633 (1989); Phys. Rev. D 45, 1342 (1992).

[18] B. Rosenstein, B. J. Warr, and S. H. Park, Phys. Rep. 205,
59 (1991).

[19] K. G. Klimenko, Z. Phys. C 37, 457 (1988); A. S. Vshivtsev,
B. V. Magnitsky, V. C. Zhukovsky, and K. G. Klimenko,
Fiz. Elem. Chastits At. Yadra 29, 1259 (1998) [Phys. Part.
Nucl. 29, 523 (1998)].

[20] T. Inagaki, T. Kouno, and T. Muta, Int. J. Mod. Phys. A 10,
2241 (1995).

[21] T. Appelquist and M. Schwetz, Phys. Lett. B 491, 367
(2000); S. J. Hands, J. B. Kogut, and C. G. Strouthos, Phys.
Lett. B 515, 407 (2001); Phys. Rev. D 65, 114507 (2002).

[22] D. Ebert, K. G. Klimenko, and H. Toki, Phys. Rev. D 64,
014038 (2001); H. Kohyama, Phys. Rev. D 77, 045016
(2008); 78, 014021 (2008).

[23] J.-L. Kneur, M. B. Pinto, R. O. Ramos, and E. Staudt,
Phys. Rev. D 76, 045020 (2007); Phys. Lett. B 657, 136
(2007).

[24] K. G. Klimenko, Z. Phys. C 54, 323 (1992); Theor. Math.
Phys. 90, 1 (1992); V. P. Gusynin, V. A. Miransky, and

I. A. Shovkovy, Phys. Rev. Lett. 73, 3499 (1994); I. A.
Shovkovy, Lect. Notes Phys. 871, 13 (2013); V. A.
Miransky and I. A. Shovkovy, Phys. Rep. 576, 1 (2015).

[25] H. Gies and S. Lippoldt, Phys. Rev. D 87, 104026
(2013).

[26] K. G. Klimenko, Z. Phys. C 50, 477 (1991); Mod. Phys.
Lett. A 09, 1767 (1994).

[27] A. S. Davydov, Phys. Rep. 190, 191 (1990); M. Rotter, M.
Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006
(2008).

[28] A. J. Niemi and G.W. Semenoff, Phys. Rev. Lett. 54, 873
(1985).

[29] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
(2009).

[30] G.W. Semenoff, I. A. Shovkovy, and L. C. R.Wijewardhana,
Mod. Phys. Lett. A 13, 1143 (1998).

[31] H. Caldas and R. O. Ramos, Phys. Rev. B 80, 115428
(2009); J. L. Kneur, M. B. Pinto, and R. O. Ramos, Phys.
Rev. D 88, 045005 (2013); R. O. Ramos and P. H. A.
Manso, Phys. Rev. D 87, 125014 (2013); K. G. Klimenko
and R. N. Zhokhov, Phys. Rev. D 88, 105015 (2013).

[32] B. Roy, Phys. Rev. B 84, 035458 (2011).
[33] V. C. Zhukovsky, K. G. Klimenko, V. V. Khudyakov, and

D. Ebert, JETP Lett. 73, 121 (2001); V. C. Zhukovsky and
K. G. Klimenko, Theor. Math. Phys. 134, 254 (2003); E. J.
Ferrer, V. P. Gusynin, and V. de la Incera, Mod. Phys. Lett. B
16, 107 (2002); Eur. Phys. J. B 33, 397 (2003).

[34] E. C. Marino and L. H. C. M. Nunes, Nucl. Phys. B741, 404
(2006); L. H. C. M. Nunes, R. L. S. Farias, and E. C.
Marino, Phys. Lett. A 376, 779 (2012).

[35] K. G. Klimenko, R. N. Zhokhov, and V. C. Zhukovsky,
Phys. Rev. D 86, 105010 (2012); Mod. Phys. Lett. A 28,
1350096 (2013).

[36] G. Cao, L. He, and P. Zhuang, Phys. Rev. D 90, 056005
(2014).

[37] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133
(1966); S. Coleman, Commun. Math. Phys. 31, 259
(1973).

[38] D. Ebert and K. G. Klimenko, Phys. Rev. D 82, 025018
(2010).

[39] I. V. Krive and S. A. Naftlin, Nucl. Phys. B364, 541 (1991);
D. Y. Song, Phys. Rev. D 48, 3925 (1993); S. Huang and
B. Schreiber, Nucl. Phys. B426, 644 (1994).

[40] A. V. Gamayun and E. V. Gorbar, Phys. Lett. B 610, 74
(2005).

[41] V. C. Zhukovsky and P. B. Kolmakov, Vestn. Mosk. Univ.
2013, 814 (2013) [Moscow Univ. Phys. Bull. 68, 272
(2013)].

[42] T. Inagaki, T. Kouno, and T. Muta, Int. J. Mod. Phys. A 10,
2241 (1995); S. Kanemura and H. T. Sato, Mod. Phys. Lett.
A 11, 785 (1996); D. M. Gitman, S. D. Odintsov, and
Y. I. Shilnov, Phys. Rev. D 54, 2968 (1996); D. K. Kim
and K. G. Klimenko, J. Phys. A 31, 5565 (1998).

[43] A. Flachi, Phys. Rev. D 86, 104047 (2012); Phys. Rev. Lett.
110, 060401 (2013); A. Flachi and K. Fukushima, Phys.
Rev. Lett. 113, 091102 (2014).

[44] T. Ando, J. Phys. Soc. Jpn. 74, 777 (2005).
[45] E. J. Ferrer, V. P. Gusynin, and V. de la Incera, Phys. Lett. B

455, 217 (1999).

EBERT et al. PHYSICAL REVIEW D 91, 105024 (2015)

105024-16

http://dx.doi.org/10.1007/BF01571607
http://dx.doi.org/10.1016/0146-6410(94)90043-4
http://dx.doi.org/10.1016/0146-6410(94)90043-4
http://dx.doi.org/10.1016/j.physrep.2004.11.004
http://dx.doi.org/10.1016/j.ppnp.2014.11.001
http://dx.doi.org/10.1007/978-3-642-37305-3
http://dx.doi.org/10.1140/epjc/s10052-013-2294-0
http://dx.doi.org/10.1140/epjc/s10052-013-2294-0
http://dx.doi.org/10.1140/epjc/s10052-014-2776-8
http://arXiv.org/abs/1411.7176
http://arXiv.org/abs/1411.7176
http://dx.doi.org/10.1103/PhysRevD.10.3235
http://dx.doi.org/10.1103/PhysRevD.10.3235
http://dx.doi.org/10.1016/0375-9601(94)90557-6
http://dx.doi.org/10.1016/0375-9601(94)90557-6
http://dx.doi.org/10.1103/PhysRevB.77.205109
http://dx.doi.org/10.1103/PhysRevD.61.045011
http://dx.doi.org/10.1103/PhysRevD.83.025001
http://dx.doi.org/10.1209/0295-5075/90/11001
http://dx.doi.org/10.1209/0295-5075/90/11001
http://dx.doi.org/10.1103/PhysRevD.90.045021
http://dx.doi.org/10.1103/PhysRevD.78.045008
http://dx.doi.org/10.1103/PhysRevD.80.125013
http://dx.doi.org/10.1103/PhysRevD.84.025004
http://dx.doi.org/10.1103/PhysRevD.86.085011
http://dx.doi.org/10.1103/PhysRevD.68.047703
http://dx.doi.org/10.1103/PhysRevD.90.105017
http://dx.doi.org/10.1103/PhysRevD.90.105017
http://dx.doi.org/10.1016/j.aop.2004.06.009
http://dx.doi.org/10.1016/j.aop.2004.06.009
http://dx.doi.org/10.1103/PhysRevD.79.105012
http://dx.doi.org/10.1103/PhysRevD.80.125038
http://dx.doi.org/10.1103/PhysRevLett.63.2633
http://dx.doi.org/10.1103/PhysRevLett.63.2633
http://dx.doi.org/10.1103/PhysRevD.45.1342
http://dx.doi.org/10.1016/0370-1573(91)90129-A
http://dx.doi.org/10.1016/0370-1573(91)90129-A
http://dx.doi.org/10.1007/BF01578141
http://dx.doi.org/10.1134/1.953089
http://dx.doi.org/10.1134/1.953089
http://dx.doi.org/10.1142/S0217751X95001091
http://dx.doi.org/10.1142/S0217751X95001091
http://dx.doi.org/10.1016/S0370-2693(00)01046-7
http://dx.doi.org/10.1016/S0370-2693(00)01046-7
http://dx.doi.org/10.1016/S0370-2693(01)00885-1
http://dx.doi.org/10.1016/S0370-2693(01)00885-1
http://dx.doi.org/10.1103/PhysRevD.65.114507
http://dx.doi.org/10.1103/PhysRevD.64.014038
http://dx.doi.org/10.1103/PhysRevD.64.014038
http://dx.doi.org/10.1103/PhysRevD.77.045016
http://dx.doi.org/10.1103/PhysRevD.77.045016
http://dx.doi.org/10.1103/PhysRevD.78.014021
http://dx.doi.org/10.1103/PhysRevD.76.045020
http://dx.doi.org/10.1016/j.physletb.2007.10.013
http://dx.doi.org/10.1016/j.physletb.2007.10.013
http://dx.doi.org/10.1007/BF01566663
http://dx.doi.org/10.1007/BF01018812
http://dx.doi.org/10.1007/BF01018812
http://dx.doi.org/10.1103/PhysRevLett.73.3499
http://dx.doi.org/10.1007/978-3-642-37305-3
http://dx.doi.org/10.1016/j.physrep.2015.02.003
http://dx.doi.org/10.1103/PhysRevD.87.104026
http://dx.doi.org/10.1103/PhysRevD.87.104026
http://dx.doi.org/10.1007/BF01551460
http://dx.doi.org/10.1142/S0217732394001611
http://dx.doi.org/10.1142/S0217732394001611
http://dx.doi.org/10.1016/0370-1573(90)90061-6
http://dx.doi.org/10.1103/PhysRevLett.101.107006
http://dx.doi.org/10.1103/PhysRevLett.101.107006
http://dx.doi.org/10.1103/PhysRevLett.54.873
http://dx.doi.org/10.1103/PhysRevLett.54.873
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1142/S0217732398001212
http://dx.doi.org/10.1103/PhysRevB.80.115428
http://dx.doi.org/10.1103/PhysRevB.80.115428
http://dx.doi.org/10.1103/PhysRevD.88.045005
http://dx.doi.org/10.1103/PhysRevD.88.045005
http://dx.doi.org/10.1103/PhysRevD.87.125014
http://dx.doi.org/10.1103/PhysRevD.88.105015
http://dx.doi.org/10.1103/PhysRevB.84.035458
http://dx.doi.org/10.1134/1.1364538
http://dx.doi.org/10.1023/A:1022284205855
http://dx.doi.org/10.1142/S0217984902003555
http://dx.doi.org/10.1142/S0217984902003555
http://dx.doi.org/10.1140/epjb/e2003-00181-8
http://dx.doi.org/10.1016/j.nuclphysb.2006.02.025
http://dx.doi.org/10.1016/j.nuclphysb.2006.02.025
http://dx.doi.org/10.1016/j.physleta.2011.12.030
http://dx.doi.org/10.1103/PhysRevD.86.105010
http://dx.doi.org/10.1142/S021773231350096X
http://dx.doi.org/10.1142/S021773231350096X
http://dx.doi.org/10.1103/PhysRevD.90.056005
http://dx.doi.org/10.1103/PhysRevD.90.056005
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1007/BF01646487
http://dx.doi.org/10.1007/BF01646487
http://dx.doi.org/10.1103/PhysRevD.82.025018
http://dx.doi.org/10.1103/PhysRevD.82.025018
http://dx.doi.org/10.1016/0550-3213(91)90276-4
http://dx.doi.org/10.1103/PhysRevD.48.3925
http://dx.doi.org/10.1016/0550-3213(94)90024-8
http://dx.doi.org/10.1016/j.physletb.2005.01.079
http://dx.doi.org/10.1016/j.physletb.2005.01.079
http://dx.doi.org/10.3103/S0027134913040127
http://dx.doi.org/10.3103/S0027134913040127
http://dx.doi.org/10.1142/S0217751X95001091
http://dx.doi.org/10.1142/S0217751X95001091
http://dx.doi.org/10.1142/S0217732396000795
http://dx.doi.org/10.1142/S0217732396000795
http://dx.doi.org/10.1103/PhysRevD.54.2968
http://dx.doi.org/10.1088/0305-4470/31/25/007
http://dx.doi.org/10.1103/PhysRevD.86.104047
http://dx.doi.org/10.1103/PhysRevLett.110.060401
http://dx.doi.org/10.1103/PhysRevLett.110.060401
http://dx.doi.org/10.1103/PhysRevLett.113.091102
http://dx.doi.org/10.1103/PhysRevLett.113.091102
http://dx.doi.org/10.1143/JPSJ.74.777
http://dx.doi.org/10.1016/S0370-2693(99)00470-0
http://dx.doi.org/10.1016/S0370-2693(99)00470-0

