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Does there arise a significant enhancement of the dynamical quark mass in external

magnetic field?
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Recently, it was found in QED that the generation of a dynamical electron mass in a strong
magnetic field is significantly enhanced by the perturbative electron mass. In the present paper, the
related question of a possible enhancement of the dynamical quark mass in an external magnetic
field and with a bare mass term is investigated in the Nambu–Jona-Lasinio model.

In the recent paper [1] some aspects of the well-known magnetic catalysis effect were studied in quantum electro-
dynamics (QED). In particular, it was shown that an enormously high external magnetic field Bme

of the order of
1082 G would be needed to create dynamically the common experimental value me ≈ 0.5 MeV of the electron mass
me in the massless QED. At the same time, if the bare mass of the theory is nonvanishing and corresponds to the
experimental value me, then in the presence of an external magnetic field of the same value Bme

the dynamical mass
of an electron is enhanced to the value almost ten times larger than me. (The behaviour of the dynamical electron
mass in a strong magnetic field in massive QED was also considered previously [2].) As it was claimed in [1], such a
significant enhancement of the dynamical electron mass in QED is a new effect that can find applications in astro-
physics and cosmology, and it deserves to be investigated in more detail, and especially also in QCD. In particular,
as it was predicted in [1], in the case with much smaller and realistic magnetic field values around 1015 G, the typical
magnetic fields of compact stars, a few percent measurable increase in the dynamical electron mass still exists.

It has been known that the magnetic catalysis effect, i.e. the spontaneous breaking of the chiral symmetry induced
by an external magnetic field B, is an universal phenomenon, which takes place in different physical models (see, e.g.,
the reviews [3] as well as the original papers [4, 5, 6, 7, 8, 9, 10] and references therein). Thus, the following natural
question arises: Does it mean that the enhancement effect has an universal character as well? In this
paper, we study this problem in the framework of the Nambu – Jona-Lasinio (NJL) model with two quark flavors.

In four-dimensional spacetime and at B = 0 the system is described by the following Lagrangian:

L = q̄[iγν∂ν − m0]q + G[(q̄q)2 + (q̄iγ5~τq)2], (1)

where the quark field q ≡ qiα is a flavor doublet (i = 1, 2 or i = u, d) and a color triplet (α = 1, 2, 3 or α = r, g, b)
as well as a four-component Dirac spinor; τa stands for the Pauli matrices. It is supposed here that up and down
quarks have an equal current (bare) mass m0. Clearly, at m0 = 0 this Lagrangian is invariant under the continuous
chiral SU(2)L×SU(2)R group as well as under the discrete chiral transformation, q → iγ5q. At the tree level, the
Lagrangian (1) contains two free model parameters, the coupling constant G and the bare quark mass m0. However,
when including quantum effects (quark loops), one should regularize the corresponding loop integrals, for example, by
cutting off the three-dimensional momentum space, i.e. supposing that |~p| ≤ Λ. Thus an additional free parameter,
the cutoff Λ, appeares in the model. In the mean field approximation the effective potential of the model (1) looks
like (see, e.g., [11, 12])

V (m) =
(m − m0)

2

4G
− 3

4π2

[

Λ(2Λ2 + m2)
√

m2 + Λ2 − m4 ln

(

Λ +
√

m2 + Λ2

m

)]

, (2)

where m is the dynamical quark mass, which is connected with the bare mass m0 and the vacuum expectation value
of quark fields 〈q̄q〉 through the relation

m = m0 − 2G〈q̄q〉.

Note that it depends on the model parameters G, m0, Λ and is determined by the gap equation

∂

∂m
V (m) ≡ m − m0

2G
− 3m

π2

[

Λ
√

m2 + Λ2 − m2 ln

(

Λ +
√

m2 + Λ2

m

)]

= 0. (3)

Evidently [11, 12], at m0 = 0 the dynamical quark mass m is a nonzero quantity only at G > Gcrit = π2/(6Λ2)
(in this case the chiral symmetry of the model is spontaneously broken down). However, it follows from (3) that at
m0 = 0 and G < Gcrit we have m ≡ 0, and the chiral symmetry remains intact in this case. If m0 6= 0, then m 6= 0
for arbitrary values of G. Below, one can find some values of m vs m0 in the second line of Tables I, II for G < Gcrit.

The influence of an external constant and homogeneous magnetic field B on the properties of the NJL-type models
was already considered in refs. [12, 13, 14, 15]. To obtain the corresponding Lagrangian, it is necessary to perform
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in (1) the following replacement: ∂ν → ∂ν + iQAν , where Aν is a vector-potential of an external magnetic field B,
and Q = diag(e1, e2) is the electric charge matrix of quarks. Here e1 = 2|e|/3 and e2 = −|e|/3 (e is the electric
charge of electrons) are the electric charges of u- and d- quarks, respectively. At m0 = 0, the resulting Lagrangian
is still symmetric with respect to the discrete symmetry q → iγ5q, but it is no more invariant under the continuous
chiral symmetry SU(2)L×SU(2)R because of the difference in quark electric charges. Clearly, at B 6= 0 the effective
potential of the model is also modified (see, e.g., [12]) and looks like

Veff(M ; B) = V (M) −
2
∑

i=1

3(eiH)2

2π2

{

ζ′(−1, xi) −
1

2
[x2

i − xi] lnxi +
x2

i

4

}

, (4)

where xi = M2/(2|eiB|) for each i = 1, 2, ζ′(−1, x)= dζ(ν, x)/dν|ν=−1 (ζ(ν, x) is the generalized Riemann zeta-
function [16]), and V (M) is the effective potential (2) with m replaced by M . The quantity M = M(m0, B) in (4) is
the dynamical quark mass which is the solution of the gap equation

∂

∂M
Veff(M ; B) ≡ ∂

∂M
V (M) − I1(M) − I2(M) = 0, (5)

where

Ii(M) =
3M |eiB|

2π2
{lnΓ(xi) −

1

2
ln(2π) + xi −

1

2
(2xi − 1) lnxi} (i = 1, 2) (6)

and Γ(x) is the Euler gamma-function [16]. In what follows, we suppose that B is a nonnegative quantity, and take
into consideration that M(m0, 0) = m.

At zero bare mass m0 = 0 the influence of an external magnetic field on the phase structure of the model (1) was
already investigated, e.g., in [12, 13, 14, 15]. In particular, it was shown there that at G < Gcrit and B = 0 the
global minimum of the effective potential (2) lies at the point m = 0, so that the chiral symmetries, both continuous
and discrete, are not broken down. However, at arbitrary small values of B and G < Gcrit the global minimum of
the effective potential (4) of the system is shifted to a nontrivial point. As a result, in this case the spontaneous
breaking of the discrete chiral symmetry 1 is induced by an external magnetic field B 6= 0 (magnetic catalysis effect).
Moreover, a dynamical quark mass M ≡ M(m0 = 0, B), which is the solution of the equation (5) at m0 = 0, is also
generated. Note, at G > Gcrit and m0 = 0 the dynamical chiral symmetry breaking in the NJL model takes place
even at B = 0 due to a rather strong interaction in the quark-antiquark channel.

Now, we have at our disposal all necessary formulas in order to solve the question raised at the beginning of the
paper. Clearly, the two different possibilities should be studied, G < Gcrit and G > Gcrit.

The weak coupling regime (G < Gcrit). Since in this case, as in QED, the magnetic catalysis effect takes place in
the NJL model, i.e. at m0 = 0 a nonzero dynamical quark mass is induced by an external magnetic field, we are going
to proceed in the spirit of the paper [1]. For simplicity, let us put Λ = 1 GeV, i.e. Gcrit ≈ 1.65 GeV−2, and consider,
for illustrations, two values of the coupling constant, G = 0.5 GeV−2 and G = 1 GeV−2, which are smaller, than
Gcrit. Now, in order to compare our results with those of Wang, it is convenient to divide, as in [1], the numerical
calculations into several stages.

Table I: The case G = 0.5 GeV−2.

m0 [GeV] 0 0.0003 0.003 0.03 0.3

m [GeV] 0 0.00043 0.0043 0.043 0.4

2|e|Bm [GeV2] 0 1.38 2.01 3.59 10.24

M(m0, Bm) [GeV] 0 0.00194 0.0154 0.113 0.74

R = M(m0, Bm)/m 4.51 3.58 2.64 1.85

Table II: The case G = 1 GeV−2.

m0 [GeV] 0 0.0002 0.002 0.02 0.2

m [GeV] 0 0.0005 0.0051 0.051 0.4

2|e|Bm [GeV2] 0 0.435 0.67 1.36 4.86

M(m0, Bm) [GeV] 0 0.00212 0.0165 0.116 0.65

R = M(m0, Bm)/m 4.16 3.24 2.30 1.64

(i) First, we put B = 0 and find the dynamical quark mass m, by solving equation (3) for different values of the
bare mass m0. For some representative values of m0 (see the first line in Tables I, II) the corresponding values of m
are presented in Tables I, II (see the second line there).

(ii) Next, one should find such a value of the magnetic field Bm, for which the solution of equation (5) at m0 = 0
coincides with m, i.e. M(m0 = 0, Bm) = m. For the values of m from Tables I, II the corresponding values of Bm are
presented in the third line of Tables I, II. Since Λ2/|e| ≈ 3 GeV2 ≈ 1.6·1020 G, we see that in the NJL model the values

1 The continuous chiral symmetry remains to be broken due to the presence of the isospin-violating electric charge matrix Q in the
covariant derivative of the modified Lagrangian (see the remarks above (4)).
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of the quantity Bm have the order of magnitude of the NJL characteristic magnetic scale Bc, Bc ≡ Λ2/|e|. In contrast,
in QED (see [1]) the values of the corresponding quantity Bme

are unrealistically higher than the characteristic QED
magnetic scale, the Schwinger magnetic field m2

e/|e| ≈ 4.4 · 1013 G.
(iii) Finally, for each fixed value of m0 and Bm we have solved the gap equation (5) and found the corresponding

dynamical quark mass M(m0, Bm) as well as the ratio R ≡ M(m0, Bm)/m (these quantities are given in the fourth
and fifth lines of Tables I, II respectively) which in some sense might serve as a measure of the dynamical quark mass
enhancement effect [1]. It is seen from these tables that for the considered values of m0 we have obtained R < 5 in
the framework of the NJL model (1), and even R < 2 for the physically interesting case of a dynamical quark mass
m = 0.4 GeV (with bare quark mass m0 = 0.3 GeV for G = 0.5 GeV−2 or m0 = 0.2 GeV for G = 1 GeV−2). For
comparision, let us quote the value R ≈ 10, which was obtained in the same manner in QED [1].

Judging about the possibility of the enhancement effect in terms of the quantity R only, one might conclude that in
the framework of the NJL model with a rather weak interaction, G < Gcrit, the generation of a dynamical quark mass
in a strong magnetic field is still enhanced at nonzero bare quark mass (since R ≈ 2 in physically reliable cases with
m ≈ 0.4 GeV). But here this effect is not so pronounced as in QED, where R ≈ 10. On the other hand, one should
keep in mind that in the NJL model the enhancement of the dynamical quark mass takes place only at sufficiently high
magnetic fields B & Bm ∼ 1020 G. Indeed, our calculations show that in a more interesting case with realistic values
of an external magnetic field B . Bphys ≡ 1015 G, which are typical values of magnetic fields on the surface of young
neutron stars, the dynamical quark mass M(m0 6= 0, B) is with great accuracy equal to the dynamical (constituent)
quark mass m = M(m0 6= 0, 0) at B = 0. As a result, we see that for realistic values of B the enhancement effect
is absent. In contrast, in QED such magnetic fields provide a few percent increase of the dynamical electron mass
in comparision with me at B = 0, which is sufficient for observation of this effect in experiments [1]. To better
understand the absence of the enhancement effect in the NJL model at B . Bphys, one should take into account that
in the framework of the NJL model the field Bphys is comparatively weak, since Bphys ≪ Bc, while in QED the field
Bphys is comparatively strong, since Bphys ≫ m2

e/|e|, i.e. it is much greater than the Schwinger field.
The strong coupling regime (G > Gcrit). Since NJL models are considered to be effective theories for low energy

QCD only at G > Gcrit, we have studied the influence of an external magnetic field B on the dynamical quark mass
also in this case. At G > Gcrit and B = 0, the values of the NJL model parameters can be fixed through fitting of
experimental data, and the typical set of Λ, m0, G looks like [11]: Λ = 0.6 GeV, m0 = 0.005 GeV, G = 6.73 GeV−2,
which corresponds to Gcrit ≈ 4.57 GeV−2 and the dynamical quark mass M(m0, B = 0) ≈ 0.4 GeV.

Now, using the gap equation (5), it is possible to conclude that at the value of the external magnetic field B =
Bc ≡ Λ2/|e| ≈ 6.4 · 1019 G, which is the characteristic magnetic scale of the model for the above chosen value of
Λ = 0.6 GeV, the dynamical quark mass M(m0, Bc) exceeds the dynamical quark mass M(m0, B = 0) no more than
by 20%. At B ≈ 25Bc, the corresponding dynamical quark mass is ten times larger than M(m0, B = 0), etc. Hence,
at G > Gcrit, and in a rather strong external magnetic field B & Bc the enhancement of the dynamical quark mass
also takes place.

However, for values of a magnetic field B smaller than Bc, the excess of M(m0, B) over M(m0, B = 0) sharply
decreases. (Note, that it is just in the region B . Bc that the dynamics of QCD is qualitatively similar to that in
the NJL model [17].) Indeed, at B = 0.1Bc it is equal to 0.3% etc., and for the value B = Bphys ≡ 1015 G (the field
on the surface of young neutron stars) the difference between M(m0, Bphys) and M(m0, B = 0) starts from the 10-th
significant digit, i.e. it is vanishingly small. Therefore, for sufficiently small B . Bphys ≪ Bc the enhancement effect
is absent both in the NJL model and QCD 2, and hence, in physical applications one might ignore the dependence
of the dynamical quark mass on an external magnetic field B in this range. In spite of this fact, there are other
phenomena, which can be observed at B . Bphys in dense quark matter. Among them are the magnetic oscillation
effect and other effects [12, 14] that are not directly related to the behaviour of the dynamical quark mass vs B. They
are connected mostly with the thermodynamical properties of the system.

We remark in conclusion, that in order to answer the question raised at the beginning of the paper, one should
first establish the ranges for the external magnetic field B under consideration. Then, if B varies in a certain vicinity
of Bphys ≡ 1015 G, the considered enhancement effect is intrinsic to QED (since here the magnetic field Bphys can
be considered to be strong enough). At the same time, in QCD or the NJL model, the dynamical quark mass is not
influenced by these realistic values of an external magnetic field. However, if B is rather strong, i.e., B & Bc, the
enhancement of a dynamical fermion mass does occur in QED and the NJL-type models, etc.

Note that in QCD in a strong magnetic field the situation with the enhancement effect might be very involved.
Indeed, as it was shown in [17] in the chiral limit of QCD, the dynamical quark mass at B & Bc behaves quite
unexpectedly since in a wide range of strong magnetic fields it is suppressed in comparision with the dynamical quark
mass at B = 0 (one of the reasons is that QCD is an asymptotically free model). The same behaviour of the dynamical
quark mass might be inherent to QCD with nonzero bare quark mass.

2 The behaviour of the quark condensate Σ(B) at small values of magnetic fields B ≪ Bc was also considered in the framework of the
chiral effective theory [18]. It is easily seen that in this case at B . Bphys the quark condensate Σ(B) exceeds Σ(0) also in sufficiently
small fractions of a percent and, hence, the dependence of chiral condensate on B might not be allowed for.
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