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MESONS AND DIQUARKS IN A DENSE QUARK MEDIUM WITH

COLOR SUPERCONDUCTIVITY

K. G. Klimenko∗ and D. Ebert†

In the framework of the Nambu–Jona-Lasinio model with two quark flavors, we investigate the spectrum

of meson and diquark excitations of dense quark matter in the phase with color superconductivity. The

color SUc(3) symmetry is spontaneously broken to SUc(2) in this phase. But instead of the expected

five Goldstone bosons in the mass spectrum, we observe only three, among which two bosons obey the

quadratic dispersion law. We find the doublet of light diquark states with the mass ∼ 15 MeV and also

the heavy diquark resonance (SUc(2) singlet) with the mass ∼ 1100 MeV. The π- and σ-mesons have the

mass ∼ 330 Mev in the phase with color superconductivity. The π-mesons are then stable particles, while

the σ-meson is stable only in the chiral limit in which the current quark mass m0 becomes zero. If m0 �= 0,

then the σ-meson mixes with diquarks in the phase with color superconductivity and becomes a resonance

with the width ∼ 30MeV.
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1. Introduction

Investigating the properties of hot and/or dense matter composed of strongly interacting particles is
a relevant problem in contemporary physics. Under normal conditions, i.e., at a low temperature T and
baryon density nB, a hadronic phase of this matter is realized in which the chiral symmetry is broken and
quarks and gluons are unobservable (the confinement phenomenon). It is generally believed that a matter
form of strongly interacting particles at a high temperature must be the quark–gluon plasma whose ground
state is characterized by chiral symmetry and the presence of quarks and gluons in the mass spectrum. If
the temperature is low, then as pressure increases (both the baryon chemical potential µB and the baryon
density nB increase in this case), hadrons become closer until at some critical pressure (the baryon density),
they group into separate systems composed of quarks, which are therefore called lumps of quark matter.
Strongly interacting matter must therefore exist in the form of quark matter at sufficiently high densities
(and at low temperatures). Modern estimates give relative densities ten times higher than the density of
standard nuclear matter. The quark matter can therefore be observed in experiments on collision of heavy
relativistic ions and may presumably exist in neutron star cores.

We review the properties of dense cold quark matter. In this matter state, as well as in the quark–
gluon plasma, both the confinement and the spontaneous breaking of the chiral symmetry are absent.1

But at sufficiently high values of µB, a diquark condensate, which breaks the color SUc(3) symmetry
of strong interactions, may appear in such a medium resulting in a system transition to a state with
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1If we restrict the consideration to only these two properties, then the quark–gluon plasma does not differ from the dense
quark matter formally speaking. But because the gluon density can be neglected compared with the baryon density at very
low temperatures, the matter of strongly interacting particles at small T and high nB is conventionally called quark matter.
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color superconductivity (CSC) [1]. The mechanism resulting in CSC completely differs from the standard
superconductivity in which the creation of Cooper pairs is due to the electron attraction arising because
of interactions with crystal lattice ions. In quantum chromodynamics (QCD), the quark–gluon interaction
results in the attraction of two quarks in the channel that is a color antitriplet. This attraction results in
the quarks near the Fermi surface being grouped into Cooper pairs whose condensate is the main indication
of the reconstruction of the system ground state and of the appearance of CSC.

The CSC phenomenon was investigated in the QCD framework in [2] at asymptotically high baryon
densities nB, where the QCD effective coupling constant is small and perturbation theory calculation
methods are applicable. But in the domain of small and intermediate values of the density nB (then
µB � 1500MeV), which may presumably occur in neutron star cores, the strong coupling constant is
large, which makes perturbation theory calculations physically inadequate. In this case, effective field
theory methods and, in particular, the Nambu–Jona-Lasinio (NJL) model [3] with four-quark interaction
are customarily used to investigate dense quark matter. It was shown in the framework of this model that
the lower bound of the CSC phase lies at relatively low values of the chemical potential µB ∼ 1000MeV.
Moreover, a modification of neutron star evolutionary processes due to the possible presence of CSC at
their cores was considered (see [4]).

In the present paper based on our previous publications [5]–[7], we investigate one-particle excitations
of the CSC-phase ground state of the dense quark matter at zero temperature in the framework of the
NJL model with quarks of two flavors. We mainly focus on calculating meson and diquark masses. Meson
properties have been well studied in the vacuum case, but little is known about their properties in a dense
(quark) medium. A possible multiple creation of these particles in collision reactions of heavy relativistic
ions and their participation in various physical processes inside neutron stars provide additional motivation
for our investigation. Although diquarks transfer the color, they are real particles in the CSC phase of
quark matter (the color symmetry is broken in this phase); hence, all that was said about mesons holds for
diquarks. Furthermore, diquarks may be relevant for studying baryon properties because diquarks can be
considered constituents of baryons.

In our investigations, we use methods of quantum field theory, whose basic principles can be found
in [8].

2. Effective action and the thermodynamic potential in the NJL
model

2.1. The Lagrangian and the effective action. Models of the NJL type are among the most
effective tools for investigating a number of physical processes in the QCD low-energy domain. For exam-
ple, the physics of light mesons [9]–[11] and diquarks [12] and meson–baryon interactions [13] have been
successfully described in the framework of the NJL model. Such models are also interesting because they
realize the principle of dynamical (chiral) symmetry breaking, a phenomenon actively studied in theories
with four-fermion interaction. In particular, the influence of a magnetic field [14] and that of the space
curvature and its nontrivial topology [15] on the dynamical symmetry breaking have been studied.

But the model has disadvantages, among which the main disadvantage is the absence of confinement.
This is a drawback, but only when describing processes in the vacuum, i.e., at zero temperature and zero
baryon density nB. For large T and nB, the strongly interacting matter, as mentioned in Sec. 1, is not in
the hadronic phase, and quarks and gluons hence become observable particles (confinement is absent). The
presence of quarks in the mass spectrum of the NJL-type models is then a natural advantage of the model,
not disadvantage, when describing physical phenomena under extreme conditions. In this respect, the model
has already been used to consider properties of both normal (without CSC) dense quark matter [11], [16]
and the CSC phenomenon in the domain of intermediate baryon densities [4], [17].
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We here consider the NJL-type model with quarks of two flavors and two coupling constants describing
interactions in the quark–antiquark and in the scalar quark–quark channels in the domain of intermediate
baryon densities (our consideration is in the Minkowski space–time),

Lq = q̄(γνi∂ν − m0 + µγ0)q + G[(q̄q)2 + (q̄iγ5�τq)2] + H
∑

A=2,5,7

(q̄C iγ5τ2λAq)(q̄iγ5τ2λAqC), (1)

where µ ≡ µB/3 > 0 is the chemical potential of the quark number whose fields q ≡ qiα constitute a doublet
w.r.t. the flavor SU(2) group (i = 1, 2) and a triplet w.r.t. color (α = 1, 2, 3) and are four-component
Dirac spinors; qC = Cq̄ t and q̄ C = qtC are the charge-conjugate spinors (here C = iγ2γ0 is the charge
conjugation matrix and the symbol t denotes transposition). We also use the notation τa and λA (a = 1, 2, 3,
A = 2, 5, 7) for the respective Pauli 2×2 matrices in the flavor space and for the skew-symmetric Gell-Mann
3×3 matrices in the color space. The Lagrangian Lq is invariant under the color SUc(3) and baryon UB(1)
transformations and also under transformations from the flavor SU(2) group (if m0 �= 0). (The latter
extends to the chiral SU(2)L×SU(2)R group at m0 = 0.) We note that Lagrangian (1) is charge symmetric
(q → qC , q̄ → q̄C) at µ = 0, but this symmetry is broken if the chemical potential is nonzero. In our
approach, we assume that temperature is zero and the model parameters in numerical calculations take the
values

G = 5.86GeV−2, Λ = 618MeV, m0 = 5.67MeV, H =
3G

4
, (2)

where Λ is the cutoff parameter of the three-dimensional momentum space over which we integrate when
calculating Feynman diagrams. The values of the parameters G, Λ, and m0 in (2) result in the well-known
values of the constant of the weak pion decay Fπ = 92.4MeV, of the pion mass Mπ = 140MeV, and of the
chiral quark condensate 〈q̄q〉 = −(245MeV)3 in the empty space (the procedure for fixing the parameters
of the NJL model is well described, e.g., in [9]). Starting from the modern experimental data, we cannot
find the coupling constant H in the diquark channel with a sufficient accuracy. We have therefore chosen
the relation between G and H in (2) as in the QCD four-quark vertex function in the one-gluon-exchange
approximation [4].

We here consider both the properties of the ground state of the system with Lagrangian (1) and the mass
spectrum of its quark, meson, and diquark excitations. For this, we must find the system thermodynamic
potential (TDP) Ω and its effective action up to the second order in bosonic fields. We begin with the
auxiliary Lagrangian L containing bosonic fields,

L = q̄(γν i∂ν + µγ0 − σ − m0 − iγ5πaτa)q − 1
4G

(σσ + πaπa) − 1
4H

∆∗
A∆A −

− ∆∗
A

2
(q̄Ciγ5τ2λAq) − ∆A

2
(q̄iγ5τ2λAqC), (3)

where, as in what follows, the repeated indices a = 1, 2, 3 and A, A′ = 2, 5, 7 imply summation. The
Lagrangians Lq and L are equivalent for the bosonic field equations of motion, which imply that

σ(x) = −2G(q̄q), πa(x) = −2G(q̄iγ5τaq),

∆A(x) = −2H(q̄Ciγ5τ2λAq), ∆∗
A(x) = −2H(q̄iγ5τ2λAqC).

(4)

Relations (4) imply that the meson fields σ and πa are real-valued, i.e., (σ(x))† = σ(x) and (πa(x))† = πa(x)
(the symbol † denotes Hermitian conjugation), whereas the diquark fields ∆A are complex quantities and
therefore (∆A(x))† = ∆∗

A(x). It is obvious that ∆A(x) and σ(x) are scalars and πa(x) are pseudoscalars.
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Finally, σ(x) and πa(x) are singlets w.r.t. the color SUc(3) group, while the fields ∆A(x) transform in
accordance with the antitriplet representation 3̄c of this group.

Using functional methods, we can find the TDP Ω and the effective action Seff based on Lagrangian (3).
For example, the effective action for the bosonic fields in the fermionic-field one-loop approximation is given
by the functional integral

eiSeff (σ,πa,∆A,∆∗
A′) = N ′

∫
[dq̄][dq] exp

(
i

∫
L d4x

)
,

where N ′ is the normalization constant. Hence, it is easy to obtain

Seff(σ, πa, ∆A, ∆∗
A′) = −

∫
d4x

[
σ2 + π2

a

4G
+

∆A∆∗
A

4H

]
+ S̃eff , (5)

where the term S̃eff is

eiS̃eff = N ′
∫

[dq̄][dq] exp
(

i

2

∫
[q̄D+q + q̄CD−qC − q̄KqC − q̄CK∗q] d4x

)
. (6)

Here, we use the notation2

D+ = iγν∂ν − m0 + µγ0 − Σ, D− = iγν∂ν − m0 − µγ0 − Σt,

Σ = σ + iγ5πaτa, K∗ = i∆∗
Aγ5τ2λA, K = i∆Aγ5τ2λA, Σt = σ + iγ5πaτ t

a.
(7)

For what follows, the Nambu–Gor’kov formalism in which q and qC are combined in a new bispinor field
Ψ =

(
q

qC

)
is convenient. Rewriting expression (6) in terms of Ψ and Ψt and subsequently integrating over

bispinors in the obtained expression, we have

S̃eff(σ, πa, ∆A, ∆∗
A′) =

1
2i

Tr{NGsfcx} log

(
D+ −K

−K∗ D−

)
≡ 1

2i
Tr{NGsfcx} log Z, (8)

where the operator Z is represented as a matrix in the two-dimensional space of Nambu–Gor’kov bispinors.
Here, the trace operation Tr{NGsfcx}( · ) is taken in the Nambu–Gor’kov space as well as in the coordinate
(x), color (c), spinor (s), and flavor (f) spaces.

Based on formulas (5)–(8), we can now find the system TDP Ω(σ, πa, ∆A, ∆∗
A′),

Seff |σ,πa,∆A,∆∗
A′=const = −Ω(σ, πa, ∆A, ∆∗

A′)
∫

d4x, (9)

where we assume that all the bosonic fields are independent of the space coordinates x. It is well known
that in thermodynamic equilibrium, i.e., in the ground state, the field means 〈σ(x)〉 ≡ σ0, 〈πa(x)〉 ≡ π0

a,
〈∆A(x)〉 ≡ ∆o

A, and 〈∆∗
A′(x)〉 ≡ ∆∗o

A′ are the coordinates of the point of the absolute minimum of the TDP
Ω. Hence, the set of x-independent parameters σ0, π0

a, ∆o
A, and ∆∗o

A′ provides the solution of the system of
stationary equations,

∂Ω
∂πa

= 0,
∂Ω
∂σ

= 0,
∂Ω

∂∆A
= 0,

∂Ω
∂∆∗

A′
= 0. (10)

2To reduce the quark sector of Lagrangian (3) to the expression in the square brackets in (6), we use the well-known

relations ∂t
ν = −∂ν , CγνC−1 = −(γν)t, Cγ5C−1 = (γ5)t = γ5, τ2�ττ2 = −(�τ)t, and τ2 =

(
0 −i
i 0

)
.
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We now make a shift in Seff : σ(x) → σ(x) + σ0, πa(x) → πa(x) + π0
a, ∆∗

A(x) → ∆∗
A(x) + ∆∗o

A , and
∆A(x) → ∆A(x) + ∆o

A. The matrix Z in Eq. (8) then transforms as

Z →
(

D+
0 −K0

−K∗
0 D−

0

)
−

(
Σ K

K∗ Σt

)
≡ S−1

0 −
(

Σ K

K∗ Σt

)
, (11)

where S0 is the matrix of the quark propagator in the Nambu–Gor’kov representation and

(K0, K
∗
0 , D±

0 , Σ0, Σt
0) = (K, K∗, D±, Σ, Σt)

∣∣
σ=σ0,πa=π0

a,...
.

Developing Eq. (5) into a series in the bosonic fields (up to the second order), we then have

Seff(σ, πa, ∆A, ∆∗
A′) = S(0)

eff + S(2)
eff (σ, πa, ∆A, ∆∗

A′) + . . . , (12)

where (terms linear in meson and diquark fields are absent in expression (12) because of the stationarity
equations)

S(0)
eff = −

∫
d4x

[
σ0σ0 + π0

aπ0
a

4G
+

∆o
A∆∗o

A

4H

]
− i

2
Tr{NGscfx} log(S−1

0 ) ≡

≡ −Ω(σ0, π0
a, ∆o

A, ∆∗o
A′)

∫
d4x, (13)

S(2)
eff (σ, πa, ∆A, ∆∗

A′) = −
∫

d4x

[
σ2 + π2

a

4G
+

∆A∆∗
A

4H

]
+

+
i

4
Tr{NGscfx}

{
S0

(
Σ K

K∗ Σt

)
S0

(
Σ K

K∗ Σt

)}
. (14)

Because we investigate the spectrum of meson and diquark excitations based on the effective action S(2)
eff in

what follows, it is convenient to represent Eq. (14) in the form

S(2)
eff = S(2)

mesons + S(2)
diquarks + S(2)

mixed, (15)

where

S(2)
mesons = −

∫
d4x

σ2 + π2
a

4G
+

i

4
Trscfx{S11ΣS11Σ + 2S12ΣtS21Σ + S22ΣtS22Σt}, (16)

S(2)
diquarks = −

∫
d4x

∆A∆∗
A

4H
+

i

4
Trscfx{S12K

∗S12K
∗ + 2S11KS22K

∗ + S21KS21K}, (17)

S(2)
mixed =

i

2
Trscfx{S11ΣS12K

∗ + S21ΣS11K + S12ΣtS22K
∗ + S21KS22Σt}, (18)

and Sij are the matrix elements of the quark propagator S0 taken in form (11).

2.2. The TDP, the quark propagator, and the model phase structure. We recall that the
phase structure of any theory is determined by its order parameter values. In our case, the order parameters
are the quantities σ0, π0

a, ∆o
A, and ∆∗o

A′ , which are the coordinates of the point of the absolute minimum
of the TDP Ω and satisfy stationarity equations (10). In fact, we can substantially reduce the number
of order parameters. First, we assume that the P-parity is preserved, which gives 〈πa(x)〉 ≡ π0

a = 0.
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Second, because the TDP is invariant under color SUc(3) rotations, we can confine ourself to the case
where 〈∆2(x)〉 ≡ ∆o

2 �= 0 while 〈∆5,7(x)〉 ≡ ∆o
5,7 = 0. The problem of determining the phase structure of

the initial model therefore reduces to finding only the two order parameters ∆ ≡ 〈∆2(x)〉 and σ0 ≡ 〈σ(x)〉.
Introducing the dynamical quark mass m ≡ m0 +σ0, we can easily find the system TDP using relation (13)
(also see [17], [18]),

Ω(m, ∆) =
(m − m0)2

4G
+

|∆|2
4H

− 4
∑

±

∫
d3q

(2π)3
|E±

∆| − 2
∑

±

∫
d3q

(2π)3
|E±|, (19)

where E±
∆ =

√
(E±)2 + |∆|2, E± = E ± µ, and E =

√
�q 2 + m2 . Because the integrals in expression (19)

contain ultraviolet divergences, we regularize them by setting |�q | < Λ, where the value of Λ is from (2).
For m0 �= 0, depending on the value of µ, the absolute minimum of TDP (19) may be located either at
the point ∆ = 0, m �= 0 (in this case, the system is in the normal SUc(3)-invariant phase in which CSC is
absent) or at a point ∆ �= 0, m �= 0 corresponding to the CSC phase of the dense quark matter in which
the SUc(3) symmetry is spontaneously broken to the SUc(2) symmetry. To determine which of the two
phases the system is in for a given value of µ, we must know all the solutions of the stationary equations
for TDP (19) (they are also called the gap equations),

∆
4Hs

= 4i∆
∫

d4q

(2π)4

{
1

q2
0 − (E+

∆)2
+

1
q2
0 − (E−

∆)2

}
= 2∆

∫
d3q

(2π)3

{
1

E+
∆

+
1

E−
∆

}
, (20)

m − m0

2G
= 4im

∑

±

∫
d4q

(2π)4
1
E

{
E±

q2
0 − (E±)2

}
+ 8im

∑

±

∫
d4q

(2π)4
1
E

{
E±

q2
0 − (E±

∆)2

}
, (21)

and then choose that solution for which the TDP is minimum. Of course, the described procedure can
be performed in full only numerically. The simulation results are given in Fig. 1, where we depict the
coordinates of the TDP absolute minimum depending on the values µ of the quark chemical potential. It
is clear that for µ < µc ≈ 350MeV, the system is in the normal phase because there ∆ = 0. For µ > µc,
the order parameter ∆ is already nonzero, which corresponds to the phase with CSC. We note the jumplike
transition from the normal to the CSC phase at µ = µc, which is therefore a first-order phase transition
point.3

We can use the procedure in [19] to find the matrix elements Sij of the quark propagator S0, which
we need for finding effective actions (16)–(18):

S11 =
∫

d4q

(2π)4
e−iq(x−y)

{
q0 − E+

q2
0 − (E+

∆)2
γ0Λ̄+ +

q0 + E−

q2
0 − (E−

∆)2
γ0Λ̄−

}
P

(c)
12 +

+
∫

d4q

(2π)4
e−iq(x−y)

{
γ0Λ̄+

q0 + E+
+

γ0Λ̄−
q0 − E−

}
P

(c)
3 , (22)

S22 =
∫

d4q

(2π)4
e−iq(x−y)

{
q0 − E−

q2
0 − (E−

∆)2
γ0Λ̄+ +

q0 + E+

q2
0 − (E+

∆)2
γ0Λ̄−

}
P

(c)
12 +

+
∫

d4q

(2π)4
e−iq(x−y)

{
γ0Λ̄+

q0 + E− +
γ0Λ̄−

q0 − E+

}
P

(c)
3 , (23)

3If the quark bare mass is zero, i.e., m0 = 0, then for µ < µc, we have the phase with spontaneous breaking of the chiral
SU(2)L×SU(2)R invariance (here the point of the TDP absolute minimum is ∆ = 0, m �= 0). But for µ > µc, the absolute
minimum is located at a point of form ∆ �= 0, m = 0, i.e., the color SUc(3) symmetry spontaneously broken while the chiral
SU(2)L×SU(2)R symmetry is restored in this domain of µ values.
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Fig. 1. The dynamical quark mass m (solid line) and the order parameter ∆ (dashed line) as

functions of the chemical potential µ.

S21 = −i∆∗τ2λ2

∫
d4q

(2π)4
e−iq(x−y)

{
γ5Λ̄+

q2
0 − (E+

∆)2
+

γ5Λ̄−
q2
0 − (E−

∆)2

}
, (24)

S12 = −i∆τ2λ2

∫
d4q

(2π)4
e−iq(x−y)

{
γ5Λ̄+

q2
0 − (E−

∆)2
+

γ5Λ̄−
q2
0 − (E+

∆)2

}
, (25)

where Λ̄± = (1 ± γ0(�γ�q − m)/E)/2 and P
(c)
12 = diag(1, 1, 0) and P

(c)
3 = diag(0, 0, 1) are two projection

operators in the color space. We mention that both in expressions (22)–(25) and in formulas (20), (21)
above, q0 is the short notation for q0 + iε sgn(q0) as ε → 0+. In the momentum representation, the poles
of matrix elements (22)–(25) determine dispersion relations, i.e., the dependence of the energy q0 of quarks
propagating in a dense matter on their three-dimensional momenta. We therefore have q0 = E−

∆ for the
energies of red/green quarks and q0 = E+

∆ for the energies of red/green antiquarks. Then, the energy of
a blue quark or antiquark is q0 = E− or q0 = E+. It follows from Fig. 1 that in the CSC phase where
µ > µc and m < µ, the quantity E may reach the value µ, which is called the Fermi energy. It is obvious
in this case that the creation of a red or green quark in the CSC medium requires the minimum energy
(q0)min = |∆| on the Fermi level E = µ (in other words, we have a gap equal to |∆| in the energy spectra
of these quarks). The creation of blue quarks does not require extra energy in the CSC phase because we
have (q0)min = 0 at E = µ for these quarks. In the normal phase, i.e., for µ < µc, the creation of a quark
of any color requires the minimum energy m − µ. We note that in any phase, the minimum energies of
antiquark and quark creation differ, which indicates that the charge symmetry is broken for µ �= 0.

3. Mesons and diquarks in a dense quark medium

We assume that ∆ is a real nonnegative quantity in what follows. To find the masses of one-particle
bosonic excitations over the ground state of the quark matter, we use effective action (15) determining
the one-particle irreducible (1PI) two-point Green’s functions of the bosonic fields σ(x), πa(x), ∆A(x), and
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∆∗
A′(x). We can then find particle masses from these functions. In the vacuum, i.e., when T = 0 and µ = 0,

the Lorentz invariance is unbroken, and all the two-particle Green’s functions therefore depend on the one
variable p2 = p2

0 − �p 2 in the momentum representation. The particle mass squared is then a zero of the
corresponding 1PI Green’s function (or the propagator pole) in p2. In a dense medium (for µ �= 0), the
Lorentz invariance is broken, and the two-point Green’s functions therefore depend on the two variables p0

and �p 2. In this case, the scalar particle mass squared is the zero of the corresponding 1PI Green’s function
in the variable p2

0 in the rest frame, i.e., at �p = 0 (see, e.g., [6], [20]). The problem of finding meson and
diquark masses therefore reduces to calculating 1PI Green’s functions in the momentum representation and
to locating their zeros in the rest frame.

For what follows, we need a technical remark. Expression (15) implies that we have the term S(2)
mixed

given by (18) in the effective action, which mixes the fields σ(x), ∆2(x), and ∆∗
2(x) and generates non-

diagonal 1PI Green’s functions of the form Γσφ(p) with one external leg corresponding to the field σ and
the other corresponding to the field φ (φ = ∆∗

2, ∆2). But detailed calculations demonstrate that in the
rest frame, i.e., at p = (p0, 0, 0, 0), each such function is proportional to m∆ (see [7]). Hence, in the nor-
mal quark phase, where ∆ = 0 and the color symmetry is unbroken, there is no mixing of σ-mesons with
diquarks. At the same time, when calculating particle masses in the CSC phase, we neglect nondiagonal
Green’s functions of the form Γσφ(p) because the dynamical quark masses m are relatively small compared
with ∆ (see Fig. 1).4

3.1. Masses of π- and σ-mesons. The 1PI Green’s functions for σ- and π-mesons can be found
from expression (16) by formulas

Γ(x − y) = − δ2S(2)
mesons

δσ(y)δσ(x)
, Πab(x − y) = − δ2S(2)

mesons

δπb(y)δπa(x)
. (26)

Substituting formulas (22)–(25) for the matrix elements Sij in expression (16) and using relations (26), we
can easily obtain the 1PI Green’s functions Γ(x−y) and Πab(x−y) and then the corresponding expressions
Γ(p) and Πab(p) in the momentum representation. The zeros of Γ(p) and Πab(p) determine the dispersion
relations for particles and antiparticles. Because we are interested only in particle masses in the dense
quark medium, we must pass to the rest frame in which the zeros of the functions Γ(p0) and Πab(p0) are
the masses of the corresponding particles, as stated above. Therefore, if �p = 0, then

Πab(p0) =
δab

2G
− 8δab

∫
d3q

(2π)3
E+

∆E−
∆ + E+E− + ∆2

E+
∆E−

∆

E+
∆ + E−

∆

(E+
∆ + E−

∆)2 − p2
0

−

− 16δab

∫
d3q

(2π)3
θ(E − µ)E
4E2 − p2

0

≡ δabΠ(p0), (27)

Γ(p0) = Γ0(p2
0) + Γ1(p2

0), (28)

Γ0(p2
0) =

1
2G

− 8
∫

d3q

(2π)3
�q 2

E2

E+
∆E−

∆ + E+E− + ∆2

E+
∆E−

∆

E+
∆ + E−

∆

(E+
∆ + E−

∆)2 − p2
0

−

− 16
∫

d3q

(2π)3
�q 2

E

θ(E − µ)
4E2 − p2

0

, (29)

Γ1(p2
0) = 16∆2m2

∫
d3q

(2π)3E2

{
1

E+
∆[p2

0 − 4(E+
∆)2]

+
1

E−
∆[p2

0 − 4(E−
∆)2]

}
, (30)

4Moreover, if the bare quark mass m0 vanishes, then m = 0 in the CSC phase as well. The mixing between σ-mesons and
diquarks therefore does not occur at all in the CSC phase in the chiral limit.
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Fig. 2. The masses of the σ-meson (solid line) and π-meson (dashed line) as functions of µ.

where we use the same notation as in expression (19). The values p0 at which functions (27) and (28) vanish
are the respective masses of π- and σ-mesons (see Fig. 2).5

It follows from Fig. 2 that the masses of π- and σ-mesons are of the order of 300MeV in the CSC
phase. Moreover, we stress that the π-meson is stable w.r.t. the strong decay channels in this phase. If we
neglect the mixing between the σ-meson and the ∆2-diquark (this is the case we consider here), then the
σ-meson is also a stable particle in the CSC phase. But we note that if we take the mixing in the CSC
phase into account, then the σ-meson is a resonance with a relatively small width of the order of 30MeV
(see [7]).

3.2. Diquark masses. For diquark masses, we must begin with effective action (17), which can be
represented in the form S(2)

diquarks = S(2)
22 + S(2)

55 + S(2)
77 , where

S(2)
22 = −

∫
d4x

∆2∆∗
2

4H
+

i

4
Trscfx{S12i∆∗

2γ
5τ2λ2S12i∆∗

2γ
5τ2λ2 +

+ 2S11i∆2γ
5τ2λ2S22i∆∗

2γ
5τ2λ2 + S21i∆2γ

5τ2λ2S21i∆2γ
5τ2λ2}, (31)

S(2)
AA = −

∫
d4x

∆A∆∗
A

4H
+

i

2
Trscfx{S11i∆Aγ5τ2λAS22i∆∗

Aγ5τ2λA}, (32)

A = 5, 7. Hence, diquarks do not mix with each other and each of expressions (31) and (32) can be
represented in the form (A = 2, 5, 7)

S(2)
AA = −1

2

∑

X,Y

∫
d4u d4v X(u) AΓXY (u − v)Y (v), (33)

where for each fixed A = 2, 5, 7, X(x), Y (x) = ∆A(x), ∆∗
A(x), and AΓXY (z) are the matrix elements of the

2×2 matrix AΓ(z) of the 1PI Green’s functions (we use the coordinate representation in expression (33))
5We note that the term Γ1(p2

0) in formula (28) is proportional to ∆2m2 and is therefore a quantity of a higher order of
smallness than the nondiagonal 1PI Green’s functions Γσφ(p0) (φ = ∆∗

2, ∆2). Because we neglect the latter by convention,
we also omit term (30) in the numerical calculations of the σ-meson mass.

90



of the diquark fields ∆A(x) and ∆∗
A(x). This matrix is nondiagonal in general, and the diquark masses are

therefore zeros of its determinant in the momentum representation.

3.2.1. Diquark masses in the CSC phase (∆ �= 0, µ > µc). We first consider the diquark
sector ∆5 and ∆∗

5. By virtue of (33) at A = 5, we have

5ΓXY (x − y) = − δ2S(2)
55

δY (y)δX(x)
(34)

(here X, Y = ∆5(x), ∆∗
5(x)). We recall that 5Γ(z) is a symmetric matrix, i.e., 5ΓXY (z) = 5ΓY X(−z).

Expressions (32) and (34) imply that 5Γ∆5∆5(z) = 5Γ∆∗
5∆∗

5
(z) = 0, and the nonzero matrix elements in the

momentum representation are

5Γ∆∗
5∆5(p) =

1
4H

− i Trsc

∫
d4q

(2π)4
{S11(q + p)iγ5λ5S22(q)iγ5λ5}, (35)

5Γ∆5∆∗
5
(p) = 5Γ∆∗

5∆5(−p), where S11(q) and S22(q) are the Fourier transforms of expressions (22) and (23).
Because we are interested in the diquark masses, we must pass to the rest frame p = (p0, 0, 0, 0) in expres-
sion (35) (see [6], [20]). It is then easy to obtain

5Γ∆∗
5∆5(p0) =

1
4H

− 4i

∫
d4q

(2π)4

{
q0 + E+

(p0 + q0 + E+)(q2
0 − (E+

∆)2)
+

q0 − E−

(p0 + q0 − E−)(q2
0 − (E−

∆)2)

}
. (36)

This expression holds for both ∆ = 0 and ∆ �= 0. For ∆ �= 0, i.e., in the CSC phase, it is useful to exclude
the coupling constant H from expression (36) using gap equation (20), subsequently integrating over q0

using the prescription q0 → q0 + iε sgn(q0), (p0 + q0) → (p0 + q0) + iε sgn(p0 + q0). As a result, we obtain

5Γ∆∗
5∆5(p0) = 2p0H(p0), 5Γ∆5∆∗

5
(p0) = −2p0H(−p0), (37)

where

H(p0) =
∫

d3q

(2π)3

{
1

(p0 + E+ + E+
∆)E+

∆

+
θ(E−)

(p0 − E− − E−
∆)E−

∆

+
θ(−E−)

(p0 − E− + E−
∆)E−

∆

}
(38)

(we take µ > 0 into account in deriving this equation). Using formulas (37), we can now easily obtain the
determinant of the matrix 5Γ(p0):

det 5Γ(p0) = −5Γ∆∗
5∆5(p0) 5Γ∆5∆∗

5
(p0) ≡ 4p2

0H(p0)H(−p0). (39)

We recall that the value of p2
0 where det 5Γ(p0) vanishes is the mass squared of the bosonic excitation in the

∆5 sector of the theory. Because ∆5(x) is a complex-valued field (and has two real degrees of freedom), the
equation det 5Γ(p0) = 0 must have either two different solutions in the variable p2

0 (corresponding to two
particles with different masses) or one doubly degenerate solution (corresponding to two distinct particles
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Fig. 3. Diquark masses: For µ < µc = 350 MeV, six diquark states constitute the SUc(3) triplet and

antitriplet. Heavy particles with the mass M∆∗ (solid line) enter the triplet, and light particles with

the mass M∆ (dashed line) enter the antitriplet (see (46)). In the CSC phase (for µ > µc), the mass

spectrum in the diquark sector contains three GBs (dashed line), the SUc(2) doublet of light diquarks

(dotted line), and the color-singlet heavy resonance. Its mass M is represented by the dot-dashed

line. The resonance width Γ is imitated in the figure by the shadowed parallelogram of width Γ; its

upper and lower boundaries are Γ/2 higher and lower than the resonance mass M .

with the same mass). This equation obviously admits one trivial solution p2
0 = 0, which can be identified

with the massless Goldstone boson (GB). (Because H(0) �= 0 for µ �= 0, no other massless bosons arise in
the ∆5 sector.) In contrast to Lorentz-invariant systems, where massless particles obey a linear dispersion
law, this boson obeys the quadratic dispersion law, i.e., p0 ∼ �p 2 as |�p | → 0 [5]. Further, we assume that the
function H(p0) becomes zero at a nonzero point p0 = −m1, i.e., H(−m1) = 0. The determinant det 5Γ(p0)
then vanishes at two points p0 = ±m1 in the variable p0 (and vanishes at the point p2

0 = m2
1 in the variable

p2
0), which corresponds to a boson of mass m1. Numerical calculations demonstrate that m1 is a very small

quantity in the CSC phase: m1 ∼ 15MeV.
We have exactly the same picture in the ∆7 sector of the theory, where we have a massless GB term

and a light boson of mass m1. Because the CSC-phase ground state is SUc(2) symmetric, we can conclude
that we have found the SUc(2) doublet of GBs and the SUc(2) doublet of light bosons with the mass m1 in
the ∆5,∆7 sector of the theory. The light boson doublet mass m1 is depicted by the dotted line in Fig. 3.

We now investigate the spectrum of bosonic excitations of the CSC phase in the diquark ∆2,∆∗
2 sector.

For these fields, the matrix of 1PI Green’s functions 2Γ(p0) has the following structure in the rest frame in
the momentum representation:

2Γ∆2∆2(p0) = 2Γ∆∗
2∆∗

2
(p0) = 4∆2I0(p2

0),

2Γ∆2∆∗
2
(p0) = 2Γ∆∗

2∆2(−p0) = (4∆2 − 2p2
0)I0(p2

0) + 4p0I1(p2
0),

(40)

where

I0(p2
0) =

∫
d3q

(2π)3
1

E+
∆[4(E+

∆)2 − p2
0]

+
∫

d3q

(2π)3
1

E−
∆[4(E−

∆)2 − p2
0]

, (41)
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I1(p2
0) =

∫
d3q

(2π)3
E+

E+
∆[4(E+

∆)2 − p2
0]

−
∫

d3q

(2π)3
E−

E−
∆[4(E−

∆)2 − p2
0]

. (42)

The mass spectrum is determined by the equation

det 2Γ(p0) ≡ 4p2
0{(p2

0 − 4∆2)I2
0 (p2

0) − 4I2
1 (p2

0)} = 0. (43)

This equation admits an obvious solution p2
0 = 0 in the variable p2

0, which corresponds to the GB. Detailed
studies (see [6]) demonstrated that the second solution of Eq. (43) corresponding to a heavy resonance lies
on the second sheet of the Riemann surface of the variable p2

0. Its mass M and width Γ are depicted in Fig. 3
for µ > µc. In the diquark ∆2,∆∗

2 sector, both the GB and the heavy resonance are singlets w.r.t. SUc(2)
group.

We mention an interesting feature of the CSC phase in which we have a nonstandard number of
GBs. It is well known that if an internal symmetry group G of dimension r1 is spontaneously broken to a
subgroup H of dimension r2 in a Lorentz-invariant theory, then r1−r2 GBs must be present in the mass
spectrum (the Goldstone theorem). Because G ≡ SUc(3) and H ≡ SUc(2) in our case, we have r1 − r2 = 5.
But we find only three GBs, which contradicts the Goldstone theorem. The resolution of this paradox
is as follows. The Goldstone theorem is formulated for Lorentz-invariant systems, while the term with
the chemical potential in Lagrangian (1) explicitly breaks the Lorentz symmetry. In such a situation, the
Nielsen–Chadha theorem [21] should be applied. Let n1 and n2 be the numbers of massless excitations
with the respective linear (E ∼ |�p |) and quadratic (E ∼ |�p |2) dispersion laws in the domain of small
three-dimensional momentum �p (E is the particle energy). Then r1 − r2 ≤ n1 + 2n2. Recalling that two
of the three massless excitations obey the quadratic dispersion law in the CSC phase of model (1), we see
that our results do not contradict this more general theorem. A nonstandard number of GBs is a feature
of other quantum theories with a chemical potential [22].

All that was said above also holds for quark matter without color neutrality. To describe a color-
neutral CSC medium, we must introduce a term with the color chemical potential in Lagrangian (1) (see,
e.g., [7], [23]). Taking the new term into account, we reduce the color symmetry of the model to the group
G ≡ SUc(2)×Uλ8(1), for which r1 = 4. In the CSC phase of this system, the symmetry of the ground state
is still H ≡ SUc(2), i.e., r2 = 3. Hence, r1− r2 = 1. This (standard) number of GBs equal to one was found
in the mass spectrum of the color-neutral CSC phase of quark matter in [7], [23]. Moreover, we have four
(instead of two) light diquark states and a heavy resonance in the diguark sector of the model, while the
meson masses remain practically unchanged if we impose the color-neutrality condition [7], [23].

3.2.2. Diquark masses in the normal phase (∆ = 0, µ < µc). In the SUc(3)-symmetric phase
(µ < µc), the order parameter ∆ is zero, and the three diquark fields ∆A(x) (A = 2, 5, 7) mix neither
with each other nor with meson fields in effective action (15). It therefore suffices to consider the bosonic
excitation spectrum, for example, in the ∆5 sector. In this phase, the determinant of the 5Γ(p0) matrix of
the 1PI Green’s functions of diquark fields ∆5, ∆∗

5 is (in the momentum representation in the rest frame)

det 5Γ(p0) = 5Γ∆∗
5∆5(p0) 5Γ∆5∆∗

5
(p0) = 5Γ∆∗

5∆5(p0) 5Γ∆∗
5∆5(−p0), (44)

where 5Γ∆∗
5∆5(p0) is given by expression (36). (Equality (39) for det 5Γ(p0) holds only for ∆ �= 0, i.e., in the

CSC phase; expression (39) is inapplicable in the SUc(3)-symmetric phase, where ∆ = 0.) By virtue of the
relation m > µ, which holds for µ < µc (see Fig. 1), we see that E ≡

√
�q 2 + m2 > µ, i.e., E± > 0, in the

normal phase. In this case, we can easily integrate over q0 in expression (36), thus obtaining an expression
valid only in the SUc(3)-symmetric phase:

5Γ∆∗
5∆5(p0) =

1
4H

− 16
∫

d3q

(2π)3
E

4E2 − (p0 + 2µ)2
≡ 1

4H
− F (ε), (45)
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where ε = (p0 + 2µ)2. Diquark masses are obviously determined by the equation det 5Γ(p0) = 0, i.e., by
zeros of expression (45) in which the function F (ε) is analytic in the complex ε plane everywhere except the
cut along the real axis 4m2 < ε. Simulations show that for the model parameter values in (2), the equation

5Γ∆∗
5∆5(p0) = 0 has only the root ε0 on the real axis (0 < ε0 < 4m2), which results in the diquark mass

values (solutions of Eq. (44)) for µ < µc

(M∆)2 = (1.998m− 2µ)2, (M∆∗)2 = (1.998m + 2µ)2. (46)

We identify M∆ with the mass of a diquark with the baryon charge B = 2/3 and M∆∗ with the mass of
an antidiquark with the baryon charge B = −2/3. The diquark and antidiquark masses differ because the
charge symmetry is absent for µ �= 0. Because of the SUc(3) symmetry, particles with masses (46) are
also present in the sectors ∆2 and ∆7. In the model spectrum for µ < µc, we therefore have the SU(3)c
antitriplet of diquarks of mass M∆ and the SU(3)c triplet of antidiquarks of mass M∆∗ . The dependence
of these masses on µ is shown in Fig. 3 for µ < µc.

We recall that we have considered only the case H = 3G/4 up to now. But it is interesting to investigate
how the quantity H (for a fixed G) affects the diquark mass spectrum in the normal phase. Formula (45)
implies that the zero ε0 of this expression falls in the interval 0 < ε0 < 4m2 only if H∗ < H < H∗∗, where

H∗ ≡ 1
4F (4m2)

=
π2

4[Λ
√

m2 + Λ2 + m2 log((Λ +
√

m2 + Λ2)/m)]
,

H∗∗ ≡ 1
4F (0)

=
π2

4[Λ
√

m2 + Λ2 − m2 log((Λ +
√

m2 + Λ2)/m)]
=

3mG

2(m − m0)
. (47)

In this case, stable diquarks whose masses are qualitatively described by formulas (46) are present in the
normal phase. If the interaction in the diquark channel is relatively small, i.e., if H < H∗, then the zero ε0

drifts to the second Riemann sheet of the variable ε, and we consequently obtain nonstable diquark modes
(resonances). In the other limiting case, i.e., with strong interaction in the diquark channel (H > H∗∗),
the zero ε0 of expression (45) is located on the negative half-axis of the variable ε, i.e., (p0 +2µ)2 < 0. This
indicates a tachyonic instability of the normal phase and is sufficient evidence for the existence of another,
lower ground state of a system. Indeed, as was shown in [24], the color symmetry of the model is broken for
large values of the coupling constant H even at µ = 0; hence, the CSC phase then prevails over the normal
quark phase for all µ > 0.

4. Conclusion

Our main aim in this paper was to describe dense quark matter in the framework of NJL model (1)
containing both quark–antiquark and diquark interaction channels. Investigating the TDP, we showed
that for model parameter values (2), the CSC phase is realized in the model for µ > µc = 350MeV.
Because the diquark condensate is nonzero in the ground state of this phase, the initial SUc(3) symmetry
is spontaneously broken to SUc(2). In this case, if the Goldstone theorem is used to find the number of
GBs in the mass spectrum, then five GBs would be expected. But we showed that we have a nonstandard
number in the CSC phase, i.e., three GBs, two of them obeying a quadratic dispersion law. This is not
contradictory, because in Lorentz-noninvariant systems such as NJL model (1), massless bosons with a
quadratic dependence of the energy on the momentum must be counted twice when calculating the number
of GBs [21]. In addition to three GBs in the diquark sector of the model CSC phase, we found a doublet
of light states (with a mass ∼ 15MeV) and a heavy resonance with a mass ∼ 1100MeV.

Concerning mesonic excitations in the CSC phase, we proved that stable π-mesons with a mass ∼
330MeV are present. The σ-meson has approximately the same mass but is stable only in the chiral limit
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in which the current quark mass m0 = 0. If m0 �= 0, then, first, the σ-meson mixes with diquarks in the
CSC phase; second, it is a nonstable particle with a decay width ∼ 30MeV.

We also considered diquark masses in the normal phase in which the SUc(3) symmetry is unbroken
(µ < µc). In this case, for model parameter values (2), all the diquarks are stable particles, among which
three (antidiquarks) constitute a heavy SUc(3) triplet and the other three (diquarks) constitute a light
antitriplet (see formulas (46) and Fig. 3). The diquark and antidiquark masses differ because the charge
symmetry is absent for µ �= 0. If the coupling constant H is sufficiently small, then all diquarks become
nonstable states in the normal phase. If the interaction in the diquark channel is strong (H > H∗∗, where
the quantity H∗∗ is given by formula (47)), then the normal quark phase is prohibited in the initial NJL
model, and the color symmetry is necessarily spontaneously broken.
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