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A possibility of formation of static dual scalar and pseudoscalar density wave condensates in dense

quark matter is considered for the Nambu–Jona-Lasinio model in an external magnetic field. Within a

mean-field approximation, the effective potential of the theory is obtained and its minima are numerically

studied; a phase diagram of the system is constructed. It is shown that the presence of a magnetic field

favors the formation of spatially inhomogeneous condensate configurations at low temperatures and

arbitrary nonzero values of the chemical potential.
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I. INTRODUCTION

At present, one of the most commonly used
effective theories of quantum chromodynamics is the
Nambu–Jona-Lasinio (NJL) model [1,2], a local relativis-
tic four-fermion interaction theory. The QCD and NJL
Lagrangians possess the same symmetry group, the NJL
model is therefore widely exploited in studying the non-
perturbative QCD vacuum and its properties under various
external conditions. Many features of quarks and light
mesons can be successfully described within the NJL
model on the basis of the spontaneous chiral symmetry
breaking phenomenon [3–5].

Considering the QCD ground state properties, a number
of studies were dedicated to the possibility of formation of
spatially nonuniform phases in dense quark matter. It was
first shown [6] that spatially inhomogeneous and aniso-
tropic chiral condensation may occur in QCD at asymptoti-
cally high values of the chemical potential and large Nc,
the ground state spatial structure taking the form of a
standing wave. This phenomenon was further discussed
in literature [7–9] investigating the possibility of such a
type of symmetry breaking and its competition with color
superconductivity under various conditions including in-
termediate densities of quark matter. The problem has
also been examined recently in the context of quarkyonic
matter [10]. Along with QCD studies, similar behavior
of the ground state has also been discovered and
successfully reproduced in NJL-like effective models
[9,11–27], although the effect tends to be dependent on
the adopted regularization scheme (see, e.g., Ref. [28] for
details).

Spatially nonuniform condensates proposed at the start
of the theoretical research on the subject [11] and studied
extensively later on are known as dual chiral density waves
(DCDW, the name introduced in Ref. [20]). The corre-
sponding configuration can be described as follows:

h �c c i ¼ �cosqr; h �c i�5�3c i ¼ �sinqr; (1)

where � is the chiral density amplitude, q is a wave vector
(which has to be determined dynamically along with �),
and �a are the isospin Pauli matrices. Expectation values
h �c c i and h �c i�5�3c i are identified with � and �0

condensates; one generally assumes h �c i�5�1c i ¼
h �c i�5�2c i ¼ 0, thus charged �� condensates being ab-
sent. In general, scalar and pseudoscalar condensates are
on the chiral circle: h �c c i2 þ h �c i�5�c i2 ¼ �2. It is ar-
gued (see, e.g., Refs. [19,20]) that DCDW may arise
between the massive and symmetric phases of the NJL
model at low temperatures if the coupling constant is
sufficiently large. The formation of DCDW along with
color superconductivity has also been discussed in litera-
ture [21–23]. It should be noted however that, although the
majority of studies of condensate inhomogeneity focus on
wavelike configurations and DCDW in particular, this is
mainly for technical reasons. There may exist other com-
peting and even more preferable spatially nonuniform
ground state configurations like domain walls, see, e.g.,
Ref. [29], but, in general, they are much harder to deal
with. For the same technical reasons, one usually considers
the limit of vanishing quark current masses (chiral limit),
although recently efforts to get rid of this assumption have
been made [24–26].
The chiral condensation phenomenon (with spatially

homogeneous condensate configurations) has recently at-
tracted great attention in the situation when external gauge
fields and, in particular, strong magnetic fields are present
[30–40]. In fact these fields are common in the physical
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circumstances where the phase structure of quark matter is
of interest, e.g., in compact stars or in heavy-ion collision
processes [41]. The effect of magnetic fields on the spa-
tially nonuniform chiral condensation is therefore worth
investigation. This is important in the context of a targeted
experimental search for possible condensate inhomogene-
ity signals predicted, e.g., in Ref. [19]. Some interesting
results related to the subject have been obtained in
Ref. [42] showing that a stack of �0 domain walls may
emerge in the QCD vacuum in a strong magnetic field due
to the axial anomaly (and concerning color superconduc-
tivity in a magnetic field, see, e.g., Refs. [43,44] suggesting
the formation of magnetic domains in cores of compact
stars).

In this paper, we examine the formation of the conden-
sate configuration defined in Eq. (1) in dense quark matter
in the framework of the NJL model in the presence of an
external magnetic field and show that the latter favors the
emergence of DCDW at low temperatures. Limiting our-
selves to the chiral limit, we base our calculations upon
exact solutions of the Dirac equation and use the proper-
time regularization method such that our results agree with
Ref. [20] in the zero-field limit.

II. THE MODEL

We start from the NJL Lagrangian density for a quark
field c with Nf ¼ 2 flavors (representing the up- and

down-quarks) and Nc ¼ 3 colors:

LNJL ¼ �c ði�D�mc þ��0Þc þG½ð �c c Þ2
þ ð �c i�5�c Þ2�; (2)

where G is the coupling constant, � is the chemical
potential, mc is the quark current mass, the covariant
derivative D ¼ @þ iQA with A being the electromagnetic
field, and Q the electric charge matrix acting in the flavor
space:

Q ¼
2
3 e 0
0 � 1

3 e

 !
; e > 0:

We take �5 ¼ �i�0�1�2�3 and assume �3 to be diagonal,
we use the standard (Dirac) representation of the � matri-
ces throughout the paper; matrix indices are suppressed
in our notation when possible. In what follows, we hold
mc ¼ 0 assuming that the appropriate dimensional
parameters in our model tend to be much greater than
mc ’ 5 MeV. The symmetry of the model is therefore
SULð2Þ � SURð2Þ and it is reduced to U�3Lð1Þ �U�3Rð1Þ
when an external homogeneous magnetic field is present
(with the field strength pointing in the z direction).

Using ansatz (1), we obtain the Lagrangian density in
the mean-field approximation (we only take into account
Hartree terms here, see a discussion on this subject in
Ref. [20]):

LMF ¼ �c ½i�Dþ��0

�mðcosqrþ i�5�3 sinqrÞ�c � m2

4G
; (3)

where we have denoted m ¼ �2G�. We assume that the
system resides in an external magnetic field, the wave
vector q being parallel to the field strengthH, both vectors
oriented along the z axis. Such an assumption is reasonable
due to the symmetry considerations; possible small devia-
tions of q from the preferred orientation alongH are taken
into account further.
As it is commonly done when considering model (3), we

use a field transformation c ! ei�
5�3bxc , �c ! �c ei�

5�3bx,
where b� � ð0;bÞ, x� � ðt; rÞ, and b ¼ q=2, to remove
the spatial modulation from the resulting Lagrangian
density L:

L ¼ �c ði�Dþ��0 �mþ �5�3�bÞc � m2

4G
: (4)

It should be noted, however, that special care is needed
when performing such operations in the presence of back-
ground gauge fields. To obtain correct results, one should
apply, for example, Fujikawa’s method [45] and its gen-
eralizations for finite fermion field transformations.
Fortunately, the path integral measure D �cDc remains
invariant in our case since the quantity ����	F��F�	

which arises in Fujikawa’s exponent, where F is the elec-
tromagnetic field strength and � is the antisymmetric ten-
sor, vanishes in the absence of an electric field.
In what follows, we obtain the thermodynamic potential

� for the model described by Eq. (4) and then study
numerically the minima of � with respect to the order
parameters m and b.

III. ONE-PARTICLE ENERGY SPECTRUM

For later convenience, let us first consider a simplified
model for a charged fermion (electron) field having no
flavors or colors with the Lagrangian density,

L ¼ �c ði�D�m� �5�bÞc ; (5)

where D ¼ @� ieA, e > 0. The term �c�5�bc in the
latter expression describes a Lorentz- and CPT-breaking
background interaction controlled by the axial four-vector
b�. This type of interaction arising within the context
of the standard model extension [46] has been a subject
of extensive theoretical research in recent years (see,
e.g., Refs. [47–50]). In this paper, in order to obtain the
one-particle energy spectrum of model (5), we use a tech-
nique similar to that adopted in Ref. [50].
Let b ¼ ð0; 0; bÞ, H ¼ ð0; 0; HÞ, H > 0; we take the

electromagnetic field in the Landau gauge: A� ¼ ð0;AÞ,
A ¼ ð0; Hx; 0Þ. The modified Dirac Hamiltonian derived
from Eq. (5) is as follows:

HD ¼ �Pþ �0m��3b; (6)
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where P ¼ �irþ eA is the gauge-invariant kinetic mo-
mentum, � ¼ �0�, �i ¼ 1

2 �ijk�
jk, ��� ¼ i

2 ½��; ���.
Since ½ð�P?Þ2; HD� ¼ 0, where P? ¼ ðP1; P2; 0Þ,
ð�P?Þ2 being an observable with an oscillatorlike spec-
trum, it is easy to prove that the eigenfunctions of HD have
a standard general form (see Chapter IV of Ref. [51] for
details):

�nqpðx; y; zÞ ¼ 1ffiffiffiffiffiffiffi
2�

p eipz
1ffiffiffiffiffiffiffi
2�

p eiqy

c1 un�1ð
Þ
ic2 unð
Þ
c3 un�1ð
Þ
ic4 unð
Þ

0
BBBBB@

1
CCCCCA

� ðeHÞ1=4;

 ¼ ffiffiffiffiffiffiffi

eH
p

xþ qffiffiffiffiffiffiffi
eH

p ; (7)

where unð
Þ are the orthonormalized Hermite functions
[we assume u�1ð
Þ � 0] and fcig are spin-dependent co-
efficients. The quantum number n ¼ 0; 1; . . . is the Landau
level, p is the momentum component parallel to the mag-
netic field direction, and q is related to the symmetry center
x0 of the wave function � along the x axis: q ¼ �x0eH.
For each n > 0 and fixed q and p, we have an eigenvalue
problem for a 4� 4-sized matrix K acting on the vector
fcig, where
K¼ �1p?þ�3pþ�0m��3b; p? ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2eHn
p

: (8)

The quantity q is absent in Eq. (8) thus providing the
degeneracy of the energy spectrum with respect to it; this
phenomenon is related to the freedom in placing the par-
ticle’s orbit in a magnetic field and is preserved for any
gauge of A.

Let us now consider a unitary transformation: ~K ¼
U�1KU, where U ¼ ei�2ð�=2Þei�0�2ð�=2Þ ¼ 1

2 ð1þ i�2Þ�
ð1þ i�0�2Þ; it yields
~K ¼ �1 ~p? þ �3 ~pþ �0mþ �0�3 ~�H; ~p? ¼ p;

~p ¼ �p?; ~�H ¼ b:
(9)

The matrix ~K formally corresponds to an electron with an
effective vacuum magnetic moment moving in an effective
external magnetic field. The problem for this case has been
studied and solved in Ref. [52] (note that the form of the
coefficients fcig is independent of the adopted electromag-
netic field gauge). The case n ¼ 0 requires a separate
treatment though, since K is reduced to a 2� 2-sized
matrix K0 acting on the coefficients fcig, i ¼ 2; 4:

K0 ¼ mþ b �p
�p �mþ b

� �
:

The eigenvalue problem for K0 can easily be solved. The
final expression for the energy spectrum has the form

Enp�� ¼
(
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
p þ bÞ2 þ 2eHn

q
; n ¼ 1; 2; . . . ;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p þ b; n ¼ 0;

(10)

where � ¼ �1 is the spin quantum number, � ¼ �1 is the
energy sign (when n > 0). When n ¼ 0, one only has two
(instead of four for n > 0) energy branches distinguished
by the number � and the latter has lost its meaning of the
energy sign in the presence of b � 0. Spectrum (10) has
been known in literature [53] but the energy shift of the
n ¼ 0 level has not been shown explicitly in the paper
cited. The specific asymmetry between the particle and
antiparticle energy spectra is due to the CPT-odd nature
of the background interaction present in our model. The
phenomenon does not manifest itself for free particles
since one can compensate theCPT-induced transformation
b ! �b by a spatial rotation. But this can no longer be
done in the presence of a preferred spatial direction which
is introduced with H in our problem.
The coefficients fcig which meet the orthonormalization

requirement for the eigenfunctions f�nqp��g are as follows:
c1
c2
c3
c4

0
BBB@

1
CCCA ¼ 1

2
ffiffiffi
2

p
��BðP� ��QÞ
�AðPþ ��QÞ
AðP� ��QÞ

��BðPþ ��QÞ

0
BBB@

1
CCCA; (11)

where

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m

�

r
; B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m

�

r
; P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p?

E

r
;

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p?

E

r
; � ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
:

Formula (11) is valid for all n provided that one assumes
� ¼ � when n ¼ 0. This has a physical reason since
the quantity � is an eigenvalue of the spin operator

�5ðP3 � �3mÞ which commutes with HD, and � ¼
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
at the lowest Landau level.

Now that we have found the energy spectrum and a
system of wave functions for Hamiltonian (6), we may
use the perturbation theory to take into account possible
small deviations of b from the direction of the magnetic
field. Let b ¼ ðb?; 0; bÞ, the corresponding correction to
HD being V ¼ ��1b?. There is no first-order correction
to the energy due to the rotational symmetry of the system.
The second-order correction obtained through the standard
procedure is as follows:

�E? ¼
�
RþR0�
E� E0

��������n0¼nþ1
�0¼�

þ RþR0�
E� E0

��������n0¼nþ1
�0¼��

þ R0þR�
E� E0

��������n0¼n�1
�0¼�

þ R0þR�
E� E0

��������n0¼n�1
�0¼��

��������� p0¼p
�0¼��

; (12)

where E is given by Eq. (10),

R� ¼ ffiffiffi
2

p
b?

 
1� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

?
E2

s !
;

and we have used a stroke symbol to denote that a quantity
is a function of the quantum number set fn0p0� 0�0g instead
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of fnp��g, the latter being fixed for a given one-particle
state. The numbers n0, �0 are expressed through n, � differ-
ently for each term in Eq. (12) while one has p0 ¼ p and
� 0 ¼ �� in the whole expression. The last two terms with
n0 ¼ n� 1 are absent in the case n ¼ 0 due to R� ¼ 0
provided that � ¼ �.

Despite the emerging energy level degeneracy with
respect to � , Eq. (12) is valid in the limit b ! 0. It is
easy to notice though that the terms with �0 ¼ � suffer
from divergence due to a level crossing possible for states
with adjacent n and opposite � , thus making the result
obtained not applicable in the corresponding region of the
parameter space, namely, when 4b2ðm2 þ p2Þ ’ ðeHÞ2
[if � ¼ sgnb the first term in Eq. (12) is divergent and if
� ¼ �sgnb such is the third]. To work around this, one has
to modify the method of calculating �E? in that region.
Using the perturbation theory formalism for two near-
degenerate levels with energies E, E0 (see, e.g., Ref. [54]
for details), we find new energy values E� with a gap
induced by the perturbation V:

E� ¼ 1

2

�
Eþ E0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE� E0Þ2 þ 4RR0

q �
;

RR0 ¼
�
RþR0�; n0 ¼ nþ 1;

R0þR�; n0 ¼ n� 1:
(13)

Assuming E� ¼ Eþ �E? and taking into account that

sgn ðE� E0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE� E0Þ2 þ 4RR0

q
’ E� E0 þ 2RR0

E� E0

when RR0 � jE� E0j, Eqs. (12) and (13) can be combined
into one asymptotic formula with the change

RR0

E� E0 !
1

2

�
�Eþ E0 þ sgnðE� E0Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE� E0Þ2 þ 4RR0

q �

applied to the first and the third term in Eq. (12), with
RR0 being RþR0� and R0þR�, respectively. The factor
sgnðE� E0Þ is used in the latter expression to select a
proper branch of solution (13) since we want to retain the
meaning of �E? being a small correction to a particular
energy level E when jE� E0j is not vanishing. There is an
ambiguity in this approach arising when E ¼ E0 in either
of the terms which have undergone the change, it may be
fixed with the help of the following convention:

sgn ðE� E0Þ !
�
sgnþðE� E0Þ; n0 ¼ nþ 1;
sgn�ðE� E0Þ; n0 ¼ n� 1;

where sgn�ð0Þ ¼ �1. It is easy to see that this ensures the
consistency of the formula obtained (no values of �E?
have been lost when considering the energy spectrum as a
whole). The final result reads

�E? ¼
�
1

2
ð�Eþ E0 þ sgnþðE� E0Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE� E0Þ2 þ 4RþR0�

q
Þjn0¼nþ1

�0¼�

þ RþR0�
E� E0

��������n0¼nþ1
�0¼��

þ 1

2
ð�Eþ E0 þ sgn�ðE� E0Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE� E0Þ2 þ 4R0þR�

q
Þjn0¼n�1

�0¼�

þ R0þR�
E� E0

��������n0¼n�1
�0¼��

��������� p0¼p
�0¼��

: (14)

The spectrum Eþ �E? with E and �E? provided with
Eqs. (10) and (14) can now be used to evaluate the effective
action of the model.

IV. EFFECTIVE POTENTIAL
AND REGULARIZATION

Let us now return to model (4). The corresponding one-
loop effective action

� ¼
Z

d4x

�
�m2

4G

�

þ 1

i
lnDetði�Dþ��0 �mþ �5�3�bÞ (15)

is decomposed trivially into similar parts calculated sepa-
rately for each flavor and color; moreover, it can be ex-
pressed in terms of the effective action �0 for the model
studied in the previous section with an appropriate change
in the electric charge and the chemical potential included:

� ¼
Z

d4x

�
�m2

4G

�
þ Nc�

0je!ð2=3Þe þ Nc�
0je!ð1=3Þe;

�0 ¼ 1

i
ln Detði�Dþ��0 �m� �5�bÞ

¼ 1

i
ln Detði@0 þ��HDÞ; (16)

where HD is given in Eq. (6). We have used a charge
conjugation for the up-quark when deriving the foregoing.
Since we know the eigenfunctions f�nqp��g and the spec-

trum fEnp��g of HD, the expression for �
0 can be evaluated

through the standard procedure:

�0 ¼ 1

2i
Tr ln½�ði@0Þ2 þ ðHD ��Þ2�

¼ 1

2i

Z
dp0

X
ðnÞ

Z
d4x

1ffiffiffiffiffiffiffi
2�

p eip
0t�þ

� ln½�ði@0Þ2 þ ðHD ��Þ2� 1ffiffiffiffiffiffiffi
2�

p e�ip0t�

¼ 1

2i

Z
dp0

X
ðnÞ

ln½�ðp0Þ2 þ ðE��Þ2� Lt

2�

Lz

2�

Ly

2�
;
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where we have introduced a characteristic four-volume
LtLxLyLz andX

ðnÞ
� X

n��

Z
dp

Z
dq ¼ X

n��

Z
dpeHLx:

In order to obtain the thermodynamic potential �, we
employ Matsubara’s technique [55]:

Z 1

�1
dp0

2�
!

Z i1

�i1
dp0

2�
¼ i

Z 1

�1
dp4

2�
! i

1

	

Xþ1

k¼�1
;

p0 ! ip4 ! i!k ¼ i
2�

	

�
kþ 1

2

�
;

where 	 ¼ 1=T is the inverse temperature; the sum over k
is easily evaluated. We finally find

�¼� �

LtLxLyLz

¼m2

4G
þNc�

0je!ð2=3ÞeþNc�
0je!ð1=3Þe;

�0 ¼�1

2

eH

ð2�Þ2
Z
dp
X
n��

�
jE��jþ 2

	
lnð1þe�	jE��jÞ

�
:

(17)

Separating the effects of nonzero temperature and the
vacuum contribution, expression (17) can be decomposed
into three terms:

�0 ¼ �0
v þ�0

� þ�0
T;

where

�0
v ¼ � 1

2

eH

ð2�Þ2
Z

dp
X
n��

jEj; (18)

�0
� ¼ � 1

2

eH

ð2�Þ2
Z

dp
X
n��

ðjE��j � jEjÞ; (19)

�0
T ¼ � 1

	

eH

ð2�Þ2
Z

dp
X
n��

lnð1þ e�	jE��jÞ: (20)

The vacuum term �0
v is divergent while the terms �0

� and

�0
T are finite (being zero when � ¼ 0 and T ¼ 0, respec-

tively). The NJL model is known to be sensitive to the
choice of a regularization scheme due to the nonrenorma-
lizable nature of the four-fermion interaction [56] (see also
a discussion on this subject for the case of a spatially
nonuniform condensate in Ref. [28]). We here employ
the proper-time method [57]:

�0
v ! 1

4
ffiffiffiffi
�

p eH

ð2�Þ2
Z

dp
X
n��

Z þ1

1=�2

ds

s3=2
e�sE2

;

where � is the regularization parameter; so our results
should agree with those obtained in Ref. [20] in the limit
H ! 0.

It is easy to see that expression (20) for �0
T is well

defined, and although expression (19) for �0
� seems to

be convergent due to the internal sum over �, care is needed
when evaluating it since it has been obtained as a differ-
ence of two divergent objects. One can derive an arbitrary
value for such an expression rearranging the terms during
the summation procedure [58], so an intermediate regu-
larization is needed to get a correct result. Let it be a simple
cutoff:

�0
� ! � 1

2

eH

ð2�Þ2
Z

dp
X
n��

ðjE��j � jEjÞ�ð�0 � jEjÞ;

(21)

where �0 is sufficiently large (not necessarily being equal
to �). If the relation Ej�¼þ1 ¼ �Ej�¼�1 > 0 holds, the
cutoff factor can be dropped out (provided that �<�0):X

�

ðjE��j � jEjÞ�ð�0 � jEjÞ

¼ ½ðjE��j þ Eþ�� 2EÞ�ð�0 � EÞ�j�¼þ1

¼ ½2ð�� EÞ�ð�� EÞ�ð�0 � EÞ�j�¼þ1

¼ ½2ð�� EÞ�ð�� EÞ�j�¼þ1:

But this is not the case when the symmetry between the
particle and antiparticle spectra is broken: Ej�¼þ1 �
�Ej�¼�1, which occurs at the lowest Landau level in our
problem [and when taking into account corrections (14) to
the energy levels as well]. In general, one has to retain the
regularization throughout the calculations or modify
the whole expression by a finite but nonzero correction.
The effect for the case b? ¼ 0, n ¼ 0 can be studied
exactly (see the Appendix):Z

dp
X
�

ðjE��j � jEjÞ�ð�0 � jEjÞj�0!1

¼
Z

dp
X
�

ðjE��j � jEjÞ þ 4�b:

If one omits the term 4�b in the above expression,
the resulting potential � turns to be dependent on b
when m ¼ 0, and this is physically incorrect according to
definition (1); no observable quantity may depend on the
wave vector of a condensate wave with a zero amplitude.

V. PHASE DIAGRAM

To construct a phase diagram of the system, we have
studied the minima of the regularized thermodynamic
potential � numerically with respect to the order parame-
ters m and b for different values of the chemical potential
� and the magnetic field strength H. We tried to find a
global minimum in the case of several minima present on
the � surface. We used spectrum (10) and took into
account corrections (14) to study the stability of the results
with respect to small deviations of b from the direction of
the magnetic field (taking �0 ¼ 10�). We only used di-
mensionless quantities throughout the calculations with
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� being the characteristic energy scale. In what follows,
we denote these quantities with the same symbols as the
original ones, e.g., m stands for m=�, etc. We performed
integration over the quantum number n instead of summa-
tion when eH � 1, thus being able to consider the limit
H ! 0with no singularities. The estimate of the maximum
relative and absolute error was set at the level of 10�3 and

10�8, respectively. We take the values of � and
ffiffiffiffiffiffiffi
eH

p
from

0 up to 0.8; it should be noted that there is no physical sense
in considering high values of these parameters since 1 is
the (dimensionless) regularization constant in our model.
The critical value of the coupling constant is Gc ’ 3:27 in
our model. If H ¼ 0 and � ¼ 0, spontaneous chiral sym-
metry breaking only occurs whenG>Gc; we take this fact
as the definition of Gc.

At present, an exact form of the one-particle energy
spectrum in the case of b? > 0 (m> 0) is not known, so
that comprehensive analysis of the problem cannot be
made. There is no strict guarantee that there are no global
minima of the thermodynamic potential somewhere in
the regionm> 0, b > 0, b? > 0whenH > 0,�> 0 since

one can construct a dimensionless ratio
ffiffiffiffiffiffiffi
eH

p
=� and the

latter may be related to the ratio b?=b. If this is true, the
DCDW wave vector orientation would be diverted from
the preferred direction ofH and the rotational symmetry of
the system would be completely broken. Nonetheless, it is

reasonable to believe that the global minima of � are
reached when b? ¼ 0 implying that the rotational symme-
try is still preserved. To test this to the extent possible, for
each minimum found (when H > 0), we studied the
behavior of the thermodynamic potential in the region of
b? close to zero. We actually calculated the second de-
rivative @2�=@b2?jb?!0 numerically, and we made use of

the explicit energy spectrum corrections (14) during the
evaluation of that quantity. The latter turned to be positive
everywhere, so, in this approximation, no instability of
the thermodynamic potential minima with respect to b?
has been found.
The results of numerical analysis in the case of T ¼ 0

and supercritical G ¼ 6 are presented in Figs. 1(a), 2, and
3. As one would expect, we recover the result obtained in
Ref. [20] in the limit H ! 0, see Fig. 3(a); and there is a
nontrivial behavior of the system when H > 0. The order
parameter b related to the DCDW wave vector (b ¼ q=2)
grows either smoothly (for the range of the chemical
potential � up to some value) or discontinuously (for
higher values of �) with the increase of the magnetic field
strength H, the effect being more vivid for greater �, see
Fig. 2. There is also a gap corresponding to a transition
from a symmetric phase present in a weak field in dense
matter (we assume b ¼ 0 when m ¼ 0 although b has no
physical meaning in that case and can be set to have an

0.0 0.2 0.4 0.6 0.8
0.0

0.2
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eH

a G 6
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0.0 0.2 0.4 0.6 0.8
0.0
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0.4

0.6

0.8

eH

b G 3
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A

FIG. 1. Phase diagrams for (a) supercritical and (b) subcritical values of the coupling constant G at zero temperature. All quantities
are dimensionless. There is a symmetric massless phase A with no chiral condensate and two chirally broken massive phases B and C,
the latter being a phase with a nonzero matter density , whereas  ¼ 0 in phase B. Massive phases B and C are spatially nonuniform
when H > 0. There is also a new phase D with a strong condensate inhomogeneity (retaining the presence of DCDW in the H ! 0
limit). The phase transitions are first order. There is a crossover between phases C and D in a magnetic field strong enough; we have
plotted the boundary between them with a dotted line in that region.
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arbitrary value). DCDW is absent if� ¼ 0. Noticeably, the
order parameter b grows linearly with the increase of
the chemical potential � (up to a critical value where a
phase transition occurs), the growth rate being higher in the
stronger field, see Fig. 3. DCDW is absent when H ¼ 0
except for the range of � corresponding to a new phase
examined in Ref. [20]. This phase (we name it phaseD, see
below) undergoes further development with the increase of
the magnetic field strength forcing out the symmetric phase
with m ¼ 0. The order parameter oscillation visible in the
diagrams when the chemical potential is high enough is a
phenomenon typical for the model [59–61], such behavior
is generally inherent in cold many-body quantum systems
in a magnetic field, the fact known since the studies on the
de Haas–van Alphen effect [62,63].

In general, the NJL model is known to give rise to three
distinct phases [64,65]: a symmetric massless phase Awith
no chiral condensate and two chirally broken massive

phases B and C, the latter being a phase with a nonzero
matter density , whereas  ¼ 0 in phase B (the B ! C
transition occurs for �>m). Massive phases B and C are
now spatially nonuniform whenH > 0. There is also a new
phase with a strong condensate inhomogeneity (retaining
the presence of DCDW in the H ! 0 limit studied in
Ref. [20]), we denote it with the symbol D. The position
of the phases described above in case of H ¼ 0 is illus-
trated in Fig. 3(a) and their evolution with the increase of
the magnetic field strength is shown in Fig. 1(a). The
transitions between the phases under consideration are first
order since the order parameters are discontinuous except
for the B ! C transition when H ¼ 0 which is second
order being a singular point in the diagram [61]. It should
be noted that theD ! C transition occurring in a magnetic
field strong enough actually belongs to a series of typical
order parameter oscillations visible, e.g., in Figs. 2(c) and
2(d). There is no significant physical difference between C
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FIG. 2. The order parameters as functions of the magnetic field strength for various values of the chemical potential at zero
temperature, and G ¼ 6. All quantities are dimensionless.
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and D in that region so we consider it as a crossover area
plotting the corresponding transition with a dotted line, and
we only plot a solid line between C and D in the region
where these phases can be distinguished clearly with a
noticeable change in their physical properties [see, e.g.,
Figs. 3(a) and 3(b)]. The position of the end point separat-
ing the solid and the dotted segment is therefore not fixed
precisely and should be chosen judiciously. In the most
general case, one may consider an infinite series of phases
fAng, fCng, and fDng when a magnetic field is present with
phase transitions corresponding to the order parameter
oscillations mentioned above (like it is done in
Refs. [59–61], see also a recent study in Ref. [35]).
However, since these oscillations are small in their relative
magnitude and tend to be smeared out with finite tempera-
ture taken into account, we consider such series as single
phases, and in this reasonable approximation, this situation
may be treated as a crossover between C and D. The main
result we have obtained is that there is a nonzero b in all

phases when H > 0 except for the symmetric one and the
case of � ¼ 0. Smooth and linear growth of b with the
increase of H and � is inherent in phase B. Symmetric
phase A now occupies a limited area on the diagram.
We have also examined the case of a subcritical G in

addition to the strong-coupling regime. The results for
G ¼ 3, T ¼ 0 are presented in Figs. 1(b) and 4. The
magnetic field is known to be a catalyst of the spontaneous
chiral symmetry breaking both in renormalizable and non-
renormalizable (NJL-like) theories (see, e.g., Refs. [66–75]
and also Refs. [59–61]), the latter demonstrating the emer-
gence of a dynamic fermion mass for arbitrary small values
of the coupling constant. This effect is present in our case
as well. The phase diagram structure obtained for our
model is similar to that derived in Ref. [61] for G<Gc

and phase B exhibits the same behavior of the order
parameter b growth as described above. Thus, DCDW
formation is preferable for the system in a wide range of
the coupling constant.

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0
a eH 0

m

b

B C D A

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0
b eH 0.15

m

b

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0
c eH 0.3

m

b

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0
d eH 0.5

m

b

FIG. 3. The order parameters as functions of the chemical potential for various values of the magnetic field strength at zero
temperature, and G ¼ 6. All quantities are dimensionless.
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VI. CONCLUSIONS

The calculations performed in the framework of the NJL
model have shown that the presence of an external mag-
netic field favors the formation of a spatially nonuniform
chiral condensate (in the form of a dual chiral density
wave) in dense quark matter at low temperatures. This
means that there exists a critical magnetic field strength
Hc such that one of the spatially nonuniform DCDW
phases (B, C, or D) emerges in the system when H >Hc

both for supercritical and subcritical values of the coupling
constant for arbitrary nonzero values of the chemical po-
tential� and T ¼ 0. For example, ifG>Gc then it is easy
to see that Hc > 0 for the range of � corresponding to the
symmetric phase A, whereas Hc ¼ 0 for other values of �
[see Fig. 1(a)]. On the contrary, in the case of subcritical
G<Gc, the quantityHc is nonvanishing for all�> 0 [see
Fig. 1(b)]. One can verify that the effect of the chiral
condensate spatial modulation is mainly due to the particle
and antiparticle energy spectra asymmetry induced by the

presence of DCDW in our model; if one drops out the
contribution of the distorted lowest Landau level (LLL) to
the thermodynamic potential of the system, the phenome-
non of the condensate wave vector being nonzero in the
massive phases of the model except for D will be lost and
phase D will be far less stable occupying a small area on
the phase diagram.
As discussed in Ref. [20] (see also Ref. [17]), linear

growth of the condensate wave vector with the increase of
the chemical potential is generally inherent in one-
dimensional systems and this is in agreement with the
dimensional reduction phenomenon occurring for fermions
in a strong magnetic field [71–73] (see also Ref. [76] for
the case of chromomagnetic fields); this behavior of the
order parameters is actually related to the specific proper-
ties of the LLL. A singular role of the LLL and its impact
on physical phenomena in various problems concerning
dense matter and symmetry breaking is pointed out in a
number of studies, see, e.g., Ref. [53] and also a recent
discussion on the chiral magnetic effect in Ref. [77].
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FIG. 4. Samples of the order parameter dependence on the external conditions at zero temperature, G ¼ 3. All quantities are
dimensionless.
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In this paper, we have only reported our results for the
case of cold quark matter, and the role of finite tempera-
ture is to be studied in our forthcoming publications.
There are also other interesting subjects left beyond the
scope of our paper. Since quark matter may possess its
own magnetization (see, e.g., Refs. [78–81] and also
Refs. [42,44]), a challenging self-consistent problem
may arise with the magnetic field being generated dynami-
cally. One should also consider the color superconductiv-
ity phenomenon possible along with the chiral density
waves formation; the results obtained in such generalized
models seem to be less regularization dependent [22]. A
nonzero quark current mass should be taken into account
as well. Besides, concerning the ground state spatial con-
figuration of the NJL model, it has been argued that
domain walls may be more preferable than chiral density
waves at least in the absence of external gauge fields [29].
At the same time, as it may be concluded from our
calculations, one would expect that a strong magnetic field
favors the formation of DCDW. Thus, there should exist
some solution interpolating between the two extremes in
the intermediate region of the magnetic field strength,
possibly being similar to the solution discussed in
Ref. [82]. On the other hand, a competing mechanism
for domain walls formation in a strong magnetic field
has also been discussed in literature [42]. Therefore, the
problem of the preferred ground state spatial structure
requires further theoretical investigation but, in general,
it has been shown that an external magnetic field induces
condensate inhomogeneity, in the form of DCDWor some
more preferable configuration. Another subject of research
is obtaining analytical expressions for the order parame-
ters as functions of the external conditions in a weak
magnetic field at least in some special cases using an
approach similar to that adopted, e.g., in Ref. [83].

Our concluding remark is that real existence of a spa-
tially nonuniform chiral condensate in nature is yet an
open question since theoretical results related to the prob-
lem are generally model and approximation dependent.
Unfortunately, exact QCD calculation of its production is
impossible, since this is an infrared phenomenon.
Nonetheless, we believe that the theoretical research of
this kind of nonperturbative effects will yield our better
understanding the properties of strongly interacting
matter.
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APPENDIX: REGULARIZATION OF �0
� AT THE

n ¼ 0 LEVEL

Let us consider the contribution of the n ¼ 0 energy
level in expression (21):

Ken ¼
Z þ1

0
dp
X
�

ðjE��j � jEjÞ�ð�0 � jEjÞ;

E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
þ b; (A1)

where we have utilized the parity of E with respect to p
under the integral and omitted the constant factor
�eH=ð2�Þ2. One can easily prove the following formulas
being valid for sufficiently large values of P:Z P

0
dp

��������
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
þ a

��������
¼
�
Ið0; PÞ þ Pa; a >�jmj;
�Ið0; p0Þ þ Iðp0; PÞ � 2p0aþ Pa; a <�jmj;Z P

0
dp

���������
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
þ a

��������
¼
�
Ið0; PÞ � Pa; a < jmj;
�Ið0; p0Þ þ Iðp0; PÞ þ 2p0a� Pa; a > jmj;

where p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �m2

p
and

Iðp1; p2Þ �
Z p2

p1

dp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q

¼ p2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

2

q
� p1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

1

q

þm2

2
ln

0
B@p2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

2

q
p1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

1

q
1
CA:

Let us apply the above formulas to evaluate Ken. We
have to choose different integration limits for different
values of � due to the energy cutoff and the spectrum

asymmetry: P1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�0 � bÞ2 �m2

p
for � ¼ þ1 and P2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�0 þ bÞ2 �m2

p
for � ¼ �1. Consider the following

expression:

Jen ¼
Z P1

0
dpj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
þ aj þ

Z P2

0
dpj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
þ aj

¼
8<
:
Iðp0; P1Þ þ Iðp0; P2Þ þ ðP1 � P2Þaþ 2p0a; jmj< a;
Ið0; P1Þ þ Ið0; P2Þ þ ðP1 � P2Þa; �jmj< a< jmj;
Iðp0; P1Þ þ Iðp0; P2Þ þ ðP1 � P2Þa� 2p0a; a <�jmj:

(A2)

Let us compare this result to one obtained with the help
of a trivial momentum cutoff (i.e., without the factor

�ð�0 � jEjÞ but with a common upper limit in the inte-
grals). Assuming P1 ¼ P2 ¼ ~�0, we get
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Jmom ¼
Z ~�0

0
dp

��������
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
þ a

��������
þ
Z ~�0

0
dp

���������
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
þ a

��������
¼
8><
>:
2Iðp0; ~�

0Þ þ 2p0a; jmj< a;

2Ið0; ~�0Þ; �jmj< a< jmj;
2Iðp0; ~�

0Þ � 2p0a; a <�jmj:
(A3)

The difference of the above quantities is

Jen � Jmom ¼ Ið~�0; P1Þ þ Ið~�0; P2Þ þ ðP1 � P2Þa:
Thus we have

Ken ¼ Jenja¼b�� � Jenja¼b

¼ Jmomja¼b�� � Jmomja¼b þ�ðP2 � P1Þ
¼ Kmom þ�ðP2 � P1Þ;

where we have introduced the symbol Kmom to denote
expression (A1) regularized with a trivial momentum cut-
off instead of the �ð�0 � jEjÞ factor:

Kmom ¼
Z ~�0

0
dp
X
�

ðjE��j � jEjÞ: (A4)

Since

lim
�0!1

ðP2 � P1Þ ¼ 2b;

we finally get

Z þ1

0
dp
X
�

ðjE��j � jEjÞ�ð�0 � jEjÞj�0!1

¼
Z ~�0

0
dp
X
�

ðjE��j � jEjÞj~�0!1 þ 2�b: (A5)

We should note that expression (A4) for Kmom is conver-
gent and well defined in the limit ~�0 ! 1. Taking suffi-
ciently large values of p, one has

X
�

����������
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þp2

q
þb��

���������
���������

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þp2

q
þb

��������
�
¼ 0:
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