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Starting from a NJL-type model with N fermion species, fermion and difermion condensates and their

associated phase structures are considered at nonzero chemical potential� and zero temperature in spaces

with nontrivial topology of the form S1 � S1 � S1 and R2 � S1. Special attention is devoted to the

generation of the superconducting phase. In particular, for the cases of antiperiodic and periodic boundary

conditions we have found that the critical curve of the phase transitions between the chiral symmetry

breaking and superconducting phases as well as the corresponding condensates and particle densities

strongly oscillate versus �� 1=L, where L is the length of the circumference S1. Moreover, it is shown

that at some finite values of L the superconducting phase transition is shifted to smaller values both of �

and particle density in comparison with the case of L ¼ 1.
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I. INTRODUCTION

In recent years, great theoretical efforts have been de-
voted to the understanding of the QCD phase diagram.
Since, at rather small values of baryonic density, weak-
coupling perturbative QCD methods are not applicable,
typically effective field theories such as the
Nambu–Jona-Lasinio-type models (NJL) [1] and others
are invoked for such kind of investigations [2–7].
Evidently, at low temperatures and baryonic densities,
one deals with the hadronic phase. But at growing baryonic
density, due to a condensation of Cooper pairs of two
quarks (diquarks), there appears a phase transition to the
so-called color superconducting (CSC) phase of QCD (see,
e.g., the reviews [7]), where the color symmetry is sponta-
neously broken down. In particular, it turned out that NJL-
type models are well suited for the description of the chiral
symmetry restoring phase transition and low-energy phe-
nomenology of mesons [8] as well as of properties of CSC
quark matter [7].

Since the most attractive feature of NJL models is the
dynamical breaking of the chiral symmetry in the hadronic
phase, the additional influence of different external factors
on the chiral properties of these models was also studied
extensively. For example, they were used to investigate
dense baryonic matter in the presence of external
(chromo)magnetic fields [9]. In particular, it was demon-
strated on the basis of NJL models in diverse dimensions
that both external magnetic [10] and chromomagnetic [11]
fields induce the chiral symmetry breaking. Moreover,
chiral symmetry breaking in four-fermion models was
studied in weakly curved spaces [12,13] and in spaces
with nontrivial topology, when one or more space coordi-
nates were compactified [14–16]. In addition, the proper-
ties of finite-size normal quark matter droplets in the
language of the MIT bag model were investigated, e.g.,
in the review [17]. Recently, it was also noted that the

position of the chiral critical end point of the QCD phase
diagram, which could be investigated in heavy ion collision
experiments, depends essentially on the finite system sizes
[18].
There is also some progress in the understanding of the

influence of different external factors on the CSC phase
transition. In this context, it is worth mentioning that an
external chromomagnetic field induces the CSC phase
transition [19] and that an external magnetic field leads
to the appearance of new magnetic phases in the three-
flavor color superconducting quark matter [20]. Moreover,
the effect of spaces with constant curvature on CSC was
studied in [21]. Note also that the stability of finite-size
quark matter droplets in the color–flavor-locked phase was
investigated in the framework of a bag model using the so-
called multiple expansion method [22].
In the present work, we shall use an alternative approach

in order to investigate superconductivity in dense cold
fermionic matter placed in a finite volume. In particular,
we shall study the Cooper pairing phenomenon in the
framework of a NJL model describing the interaction of
N fermion species in compactified spaces with nontrivial
topology. As in QCD, this model ensures in the usual R3

space the chiral symmetry breaking at rather small values
of the chemical potential �, whereas at large values of �
there appears a superconducting phase due to the conden-
sation of difermions.
In this context, let us recall the well-known fact that

spontaneous symmetry breaking in low-dimensional quan-
tum field theories may become impossible due to strong
quantum fluctuations of fields [23]. The same is also true
for systems that occupy a limited space volume. However,
as it is clear from physical considerations, the finite size in
itself may in some situations not forbid the spontaneous
symmetry breaking, if the characteristic length of the
region of space occupied by the system is much greater
than the Compton wavelength of the excitations respon-
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sible for tunneling and restoration of symmetry. (Indeed,
one may recall here well-known physical phenomena such
as the superfluidity of helium or superconductivity of
metals that are observed in samples of finite volume).
This idea has been discussed for some scalar field theories
as well as for NJL models in a closed Einstein universe, for
instance, in [24]. Similarly, if quantum fluctuations of
fields are suppressed when the number of quantum fields
N tends to infinity, spontaneous symmetry breaking
might even occur in a finite volume. Indeed, suppose that
in a finite volume an effective potential of an
OðNÞ-symmetrical model has degenerate global minima.
Then, inD-dimensional spacetime, the transition probabil-
ity from one minimum to another is proportional to
expð�NLD�2Þ at zero temperature, where L is the linear
size of the system [25]. It follows from this expression that
if L and N are finite, the transition probability is nonzero.
This circumstance ensures the vanishing of the order pa-
rameter and, as a result, might lead to a prohibition for
spontaneous symmetry breaking in a finite volume.
However, if N ! 1, the transition probability vanishes
and the spontaneous symmetry breaking is allowed.

In the present paper, the consideration of Cooper pair
(difermion) condensation in restricted regions of space is
performed in a toy NJL model in the mean field approxi-
mation, i.e. in the leading order of the large-N expansion
technique at T ¼ 0. In particular, in order to be sure that
the obtained results are stable against quantum fluctua-
tions, the composite difermion field must be a flavor singlet
(like the composite fermion-antifermion field), which tech-
nically leads to an N factor in the part of the effective
action arising from fermion loops and thus guarantees the
application of the 1=N expansion. It is just by this reason
that we demand here OðNÞ flavor symmetry as opposed to
the usual SUðNÞ symmetry.1

The paper is organized as follows. For comparison, we
first derive in Sec. II the expression for the thermodynamic
potential of cold dense fermionic matter, described by a
NJL-type Lagrangian, for the case of R3 space. It is shown
here that for some fixed values of coupling constants two
phases are allowed, the chiral symmetry breaking phase (at
�<�c � 0:3 GeV) and the superconducting one (at �>
�c). In Sec. III the phase structure of the model is inves-
tigated in the S1 � S1 � S1 space with periodic and anti-
periodic boundary conditions for fermion fields. We have
found a rather rich phase structure in the ð�;�� 1=LÞ
plane, where L is the length of each circumference S1. It
turns out that the boundary between the chiral symmetry
breaking and superconducting phases as well as the corre-
sponding condensate values and particle densities strongly
oscillate versus � at � ! 0. Finally, in Sec. IV, similar

considerations were performed in the case of R2 � S1 space
topology, where we have found smoother oscillations of
both the critical curve and the condensates versus �.

II. CASE OF R3 SPACE

A. Model and its thermodynamic potential

Our investigation is based on a NJL-type model with
massless fermions belonging to a fundamental multiplet of
the OðNÞ flavor group. Its Lagrangian describes the inter-
action in the fermion-antifermion as well as scalar difer-
mion channels:

L ¼ XN
k¼1

�c k½��i@� þ��0�c k þG

N

�XN
k¼1

�c kc k

�
2

þH

N

�XN
k¼1

�c C
k i�

5c k

��XN
j¼1

�c ji�
5c C

j

�
; (1)

where � is a fermion-number chemical potential. As it is
noted above, all fermion fields c k (k ¼ 1; . . . ; N) form a
fundamental multiplet ofOðNÞ group. Moreover, each field
c k is a four-component Dirac spinor; c C

k ¼ C �c t
k and

�c C
k ¼ c t

kC are charge-conjugated spinors, and C ¼
i�2�0 is the charge conjugation matrix (the symbol t
denotes the transposition operation). Clearly, the
Lagrangian L is invariant under transformations from the
internal OðNÞ group, which is introduced here in order to
make it possible to perform all the calculations in the
framework of the nonperturbative large-N expansion
method. Physically more interesting is that the model (1)
is invariant under transformations from an Abelian electric
charge Uð1Þ group: c k ! expi�c k (k ¼ 1; . . . ; N). In
addition, the Lagrangian is invariant under the discrete
�5 chiral transformation: c k ! �5c k, �c k ! � �c k�

5

(k ¼ 1; . . . ; N). The linearized version of Lagrangian (1)
that contains auxiliary scalar bosonic fields �ðxÞ, �ðxÞ,
��ðxÞ has the following form:

L ¼ �c k½��i@� þ��0 � ��c k � N

4G
�2 � N

4H
���

���

2
½ �c C

k i�
5c k� � �

2
½ �c ki�

5c C
k �: (2)

(Here and in the following summation over repeated in-
dices, k ¼ 1; . . . ; N is implied.) Clearly, the Lagrangians
(1) and (2) are equivalent, as can be seen by using the
Euler-Lagrange equations of motion for scalar bosonic
fields �ðxÞ, �ðxÞ, ��ðxÞ, which take the form

�ðxÞ ¼ �2
G

N
ð �c kc kÞ; �ðxÞ ¼ �2

H

N
ð �c C

k i�
5c kÞ;

��ðxÞ ¼ �2
H

N
ð �c ki�

5c C
k Þ: (3)

One can easily see from (3) that the (neutral) field �ðxÞ is a
real quantity, i.e. ð�ðxÞÞy ¼ �ðxÞ (the superscript symbol y
denotes the Hermitian conjugation), but the (charged) di-

1Note the important difference to the case of QCD-like NJL
models with SUðNÞ color symmetry, where the usual 1=N
expansion cannot be applied to colored diquarks due to the
lack of a corresponding N factor from quark loops.
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fermion field�ðxÞ is a complex scalar, so ð�ðxÞÞy ¼ ��ðxÞ.
Clearly, all the fields (3) are singlets with respect to the
OðNÞ group.2 If the scalar difermion field �ðxÞ has a non-
zero ground state expectation value, i.e. h�ðxÞi � 0, the
Abelian Uð1Þ charge symmetry of the model is spontane-
ously broken down. However, if h�ðxÞi � 0, then the dis-
crete chiral symmetry of the model is spontaneously
broken.

Let us now study the phase structure of the four-fermion
model (1) by starting with the equivalent semibosonized
Lagrangian (2). In the leading order of the large-N ap-
proximation, the effective action Seffð�;�;��Þ of the con-
sidered model is expressed by means of the path integral
over fermion fields:

expðiSeffð�;�;��ÞÞ ¼
Z YN

l¼1

½d �c l�½dc l� exp
�
i
Z

Ld4x

�
;

where

Seffð�;�;��Þ ¼ �
Z

d4x

�
N

4G
�2ðxÞ þ N

4H
�ðxÞ��ðxÞ

�
þ ~Seff : (4)

The fermion contribution to the effective action, i.e. the

term ~Seff in (4), is given by

expði~SeffÞ ¼
Z YN

l¼1

½d �c l�½dc l� exp
�
i

2

Z
½ �c kD

þc k

þ �c C
k D

�c C
k � �c kKc C

k � �c C
k K

�c k�d4x
�
;

(5)

where we have used the following notations3:

D� ¼ i��@� ���0 � �ðxÞ; K� ¼ i��ðxÞ�5;

K ¼ i�ðxÞ�5:
(6)

In the following, it is very convenient to use the Nambu-
Gorkov formalism, in which for each fixed k ¼ 1; . . . ; N a
pair of fermion fields c k and c C

k are composed into a

bispinor �k such that

�k ¼ c k

c C
k

 !
; �t

k ¼ ðc t
k;

�c kC
tÞ;

��k ¼ ð �c k; �c
C
k Þ ¼ ð �c k; c

t
kCÞ ¼ �t

k

0; C
C; 0

� �
� �t

kY:

(7)

Furthermore, by introducing the matrix-valued operator

Z ¼ Dþ; �K
�K�; D�

� �
; (8)

one can rewrite the Gaussian functional integral in (5) in
terms of �k and Z and then evaluate it as follows (clearly,
in this case ½d �c k�½dc k� ¼ ½dc C

k �½dc k� ¼ ½d�k�):

expði~SeffÞ ¼
Z YN

l¼1

½d�l� exp
�
i

2

Z
��kZ�kd

4x

�

¼
Z YN

l¼1

½d�l� exp
�
i

2

Z
�t

kðYZÞ�kd
4x

�

¼ detN=2ðYZÞ ¼ detN=2ðZÞ;
where the last equality is valid due to the evident relation
detY ¼ 1. Then, using the relation (4), one obtains the
expression for the effective action:

Seffð�;�;��Þ ¼ �
Z

d4x

�
N

4G
�2ðxÞ þ N

4H
�ðxÞ��ðxÞ

�

� i
N

2
lndetðZÞ: (9)

Starting from (9), one can define the thermodynamic po-
tential (TDP) �ð�;�;��Þ of the model (1) in the leading
order of the large-N expansion (mean field approxima-
tion):

S effj�;�;��¼const ¼ �N�ð�;�;��Þ
Z

d4x: (10)

Here we have supposed that the quantities �, �, �� do not
depend on coordinates x. Moreover, without loss of gen-
erality, one can set the arbitrary phase of� equal to zero so
that � is now considered as a non-negative real quantity,
i.e. � ¼ j�j. As a consequence, the detZ in (9) and the
TDP (10) are easily calculated. Indeed, using the general
formulas

det
A; B
�A; �B

� �
¼ det½� �ABþ �AA �A�1 �B�

and detO ¼ expTr lnO, one can find for the TDP (10) the
expression

�ð�;�Þ ¼ �2

4G
þ �2

4H
þ i

2

Trsx lnDR
d4x

; (11)

where D ¼ �2 þ �5Dþ�5D� and the Tr operation stands
for the trace in spinor (s) and four-dimensional coordinate
(x) spaces, respectively. Transferring in (11) to the mo-
mentum space representation for the operator D, we have

�ð�;�Þ ¼ �2

4G
þ �2

4H
þ i

2
Trs

Z d4p

ð2�Þ4
	 ln½�2 þ �5ðp6 þ��0 � �Þ
	 �5ðp6 ���0 � �Þ�; (12)

where in the square brackets just the momentum space

2Note that the �ðxÞ field is a flavor OðNÞ singlet, since the
representations of this group are real.

3In order to bring the fermion sector of the Lagrangian (2) to
the expression, given in the square brackets of (5), we use the
following well-known relations: @t� ¼ �@�, C�

�C�1 ¼ �ð��Þt,
C�5C�1 ¼ ð�5Þt ¼ �5.
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representation, �D, for the operator D appears. In four-
dimensional spinor space the 4	 4 matrix �D has two
different eigenvalues ��, each being twofold degenerate:

�� ¼ ðE�
� Þ2 � p2

0 � ðE��Þ2 þ�2 � p2
0; (13)

where E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ~p2

p
. Since Trs ln �D ¼ 2 ln�þ��, one can

integrate in (12) over p0 and obtain the following expres-
sion for the TDP of dense cold fermion matter (more
details of this technique are presented, e.g., in [26]):

�ð�;�Þ ¼ �2

4G
þ �2

4H
�
Z d3p

ð2�Þ3 �ð�2 � ~p2Þ½Eþ
� þ E�

� �;
(14)

where the Heaviside step function �ðxÞ has been inserted
in order to regularize the ultraviolet divergent integral, and
� is a cutoff parameter that is usually taken smaller than
1 GeV, i.e. �< 1 GeV. Since the TDP (14) is symmetric
with respect to the transformations � ! �� and � !
��, we suppose in the following that � 
 0 and � 
 0
(recall also � 
 0). It is important to note that the quan-
tities E�

� and Eþ
� defined in (13) are the energies of

fermions and antifermions (quasiparticles) in a medium,
correspondingly. Clearly, each energy level is infinitely
degenerated with respect to the direction of the momentum
~p. Indeed, there are infinitely many quasiparticles with the
same energy but with different directions of momenta.

B. Phase structure

In order to obtain the phase structure of the initial model,
it is necessary to investigate the behavior of the global
minimum point (GMP) of the TDP (14) in dependence on
the chemical potential �. The coordinates of this point are
usually called gaps. (The � and � coordinates of the GMP
are the chiral and difermion condensates, respectively.) In
the model, two types of the GMPs are allowed,
(i) ð� � 0; 0Þ and (ii) ð0;� � 0Þ. The GMP of the (i)th
type corresponds to the phase with broken chiral �5 invari-
ance only (it is a so-called normal phase), whereas the
GMP of the type (ii) corresponds to the superconducting
phase, in which Cooper pairing of fermions leads to the
spontaneous breaking of the Uð1Þ symmetry.

Throughout the paper, we use in our numerical calcu-
lations the value G ¼ 30:06 GeV�2. Moreover, for illus-
trations, let us take the cutoff in the momentum integral in
(14) to be � ¼ 650 MeV. For this choice of parameters,
the TDP (14) then predicts at � ¼ 0 and H ¼ 0 (the last is
equivalent to the constraint � ¼ 0) a corresponding value
of the chiral condensate which is characteristic to some
low-energy phenomenological QCD-like NJL models [7].
In the case under consideration, the phase structure of the
model depends essentially on the value of the coupling
constant H. Numerical calculations show that at H <G
and sufficiently low values of �<�c, the GMP of the
TDP (14) corresponds to the normal phase of the model.

However, at�>�c the superconducting phase is realized.
IfH >G, then for all values of�, and even for � ¼ 0, the
ground state of the system corresponds to the supercon-
ducting phase. The behavior of the critical value of the
chemical potential �c versus H is depicted in Fig. 1. [At
the same time, one may consider Fig. 1 as a phase portrait
of the model in terms of� and H. Then, below (above) the
critical line �c the normal (superconducting) phase of the
model is realized.] In all subsequent numerical calcula-
tions, the coupling constant H is fixed by the relation H ¼
0:55G. Hence, the set of model parameters in our inves-
tigations is the following:

G ¼ 30:06 GeV�2; H ¼ 0:55G; � ¼ 650 MeV:

(15)

As a result, we have for the set (15) �c � 0:3 GeV.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 1. The case of R3 space topology. The behavior of the
critical value of the chemical potential �c versus H at G ¼
30:06 GeV�2.
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FIG. 2. The case of R3 space topology. The gaps � and �
versus �, where �c � 296 MeV.

D. EBERT AND K.G. KLIMENKO PHYSICAL REVIEW D 82, 025018 (2010)

025018-4



Moreover, the behavior of gaps � and � versus � in this
case is presented in Fig. 2. It is clear from this figure that at
�<�c, the GMP of the TDP (14) has the form ð�; 0Þ (as a
consequence, the system is in the normal phase), where
� � 0:3 GeV, whereas for �>�c the superconducting
phase, corresponding to the GMP of the form ð0;�Þ of the
TDP, is realized in the system. Evidently, in the critical
point �c there is a first-order phase transition.

III. CASE OF S1 � S1 � S1 SPACE TOPOLOGY

In the present section, we generalize the previously
obtained results to the case of a space with finite volume.
Evidently, this is a reasonable task, since all physical
effects take place in restricted space regions. For simplic-
ity, let us suppose that our system is contained in a box with
equal linear sizes, 0 � x; y; z � L. It is well known that in
this case the task is equivalent to the consideration of the
model in the space of nontrivial S1 � S1 � S1 topology
with quantum fields satisfying some boundary conditions

of the form (here we again simplify the problem, demand-
ing identical boundary conditions for all coordinates):

c kðt; xþ L; y; zÞ ¼ ei��c kðt; x; y; zÞ;
c kðt; x; yþ L; zÞ ¼ ei��c kðt; x; y; zÞ;
c kðt; x; y; zþ LÞ ¼ ei��c kðt; x; y; zÞ;

(16)

where 0 � �< 2, L is the length of the circumference S1,
and now each of the variables x; y; zmean the path along it.
Below, we shall use only two values of the parameter �:
� ¼ 0 for periodic boundary conditions and � ¼ 1 for the
antiperiodic one.
As a consequence, to obtain the thermodynamic poten-

tial �L�ð�;�Þ of fermions moving in a space with non-
trivial topology S1 � S1 � S1, we should replace the
integration over each momentum in (14) by a summation
over corresponding discrete momenta pn� following the
rule:

Z d3p

ð2�Þ3 fðpx; py; pzÞ ! 1

L3

X1
k¼�1

X1
l¼�1

X1
m¼�1

fðpk�; pl�; pm�Þ; pn� ¼ �

L
ð2nþ �Þ; n ¼ 0;�1;�2; . . . : (17)

A. Case of antiperiodic boundary conditions

Applying the rule (17) with � ¼ 1 in the expres-
sion (14), one immediately obtains the TDP of the system
in the case of antiperiodic (‘‘a’’) boundary conditions:

�Lað�;�Þ ¼ �2

4G
þ �2

4H

� 8�3

�3

X1
i¼0

X1
k¼0

X1
l¼0

�ð�2 � p2
ia � p2

ka � p2
laÞ

	 ½Eaþ
�ikl þ Ea�

�ikl�; (18)

where � ¼ �=L, Ea�
�ikl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEikl ��Þ2 þ �2
p

, Eikl ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ia þ p2

ka þ p2
la þ �2

q
, and pia ¼ �ð2iþ 1Þ, etc.

The quantities Ea�
�ikl in (18) are the energies of elemen-

tary one-fermion excitations (quasiparticles) in a dense
medium which now occupies a finite volume and is con-
strained by antiperiodic boundary conditions. (The signs
�=þ correspond to the energies of fermion/antifermion
quasiparticles.) Evidently, both fermion and antifermion
quasiparticle energy levels can be labeled by a triple of
integers, ði; k; lÞ, where i 
 k 
 l 
 0. Clearly, in a finite
volume, the degeneracy of quasiparticle energy levels are
partially (or even totally) removed. For example, each
energy level with quantum numbers (0,0,0) is nondegen-
erated, the level (1,0,0) is threefold degenerated, etc. Now,
for each energy level ði; k; lÞ, let us put into correspondence
the integer Nikl ¼ ð2iþ 1Þ2 þ ð2kþ 1Þ2 þ ð2lþ 1Þ2 and,

as a result, the real quantity �ikl �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=Nikl

p
.4 Using these

definitions, we construct an infinite set of real scales of the
form

�0 > �1 > �2 > � � �> �n > � � � ; (19)

where each scale �k coincides with one of the above
obtained expressions �ikl and vice versa, each quantity
�ikl is equal to some element of the sequence (19). So,

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
�2=3

p ¼ �000 � 0:375 GeV, �1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=11

p ¼
�100 � 0:195 GeV, �2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=19

p ¼ �110 � 0:149 GeV,

�3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=27

p ¼ �111 ¼ �200 � 0:125 GeV, �4 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=35

p
, etc.

Recall that our aim is to investigate the phase structure
of the system with the TDP presented in (18). This means
that it is necessary to study the behavior of the global
minimum point (GMP) of the TDP versus � and � (or
L). The structure of the TDP (18) suggests the following
strategy for studying the corresponding GMP. Let us divide
the plane ð�;�Þ into an infinite set of strips, parallel to the
� axis:

!0 ¼ fð�;�Þ:� > �0g;
!1 ¼ fð�;�Þ: �0 > �> �1g; . . . ;
!n ¼ fð�;�Þ: �n�1 > �> �ng; . . . :

(20)

4It might occur that for energy levels with different quantum
numbers ði; k; lÞ there arises the same integer Nikl. For example,
for the energy levels with quantum numbers (1,1,1) and (2,0,0)
we have N111 ¼ N200 ¼ 27 etc.
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Because of the presence of the theta function in (18), each
sum is indeed a finite one there. Furthermore, for the values
of ð�;�Þ from the strip !0, the argument of the theta
function is negative, and hence the term with sums van-
ishes there. We see that in this case, the TDP is reduced to
the quantity�La0 ¼ ð�2=4Gþ�2=4HÞ, whose minimum
lies at the point (� ¼ 0, � ¼ 0). As a result, all the points
of the strip !0 correspond to the symmetric phase of the
model (see Fig. 3). If the point ð�;�Þ belongs to the strip
!1, then only the energy levels with quantum numbers
(0,0,0) contribute to the sum in (18), so the TDP (18)
reduces to the quantity �La1:

�La1 ¼ �2

4G
þ �2

4H
� 8�3

�3
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 3�2

p
þ�Þ2 þ �2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 3�2

p
��Þ2 þ �2

q
�: (21)

The form of the GMP of this function depends essentially
on the values of ð�;�Þ, so in the strip !1, as numerical
calculations show, there are three different phases (see
Fig. 3): the symmetric phase 1 corresponding to the
GMP of the form (� ¼ 0;� ¼ 0), the chirally broken
phase 2 with (� � 0;� ¼ 0), and superconducting (SC)
phase 3 with (� ¼ 0;� � 0).

To study the phase structure of the model in the strip!2,
it is necessary to take into account in the sums (18) the
contribution from the energy levels (1,0,0) in addition. In
the strip !3, the energy levels with quantum numbers
(1,1,0) should be switched on in addition to the previous
ones, and so on. However, in each of the strips!k with k 

2, only the phases 2 and 3 might exist, so for all � < �1, we
have found in the plane ð�;�Þ just these two phases, the
phase with broken chiral symmetry and the superconduct-

ing one. In Fig. 3 they are arranged below the line � ¼ �1

and divided by a zigzag, or oscillating, critical line. The
amplitude of oscillations of this line is rather large for
values of � near the value �1. However, when � decreases,
the amplitude of oscillations becomes smaller and smaller,
and this critical line, or the boundary between phases 2 and
3, tends as a whole to the point ð�c; 0Þ at � ! 0, where �c

is the critical chemical potential at L ¼ 1. Moreover, it is
clear from Fig. 3 that at some values of � the SC phase is
allowed at even smaller values of � (up to values � �
0:2 GeV) than it occurs at L ¼ 1.
In Fig. 4, the behavior of the gap � versus � at � ¼

0:18 GeV is depicted (at this value of �, the gap � equals
to zero). In Figs. 5 and 6 the gaps � and � versus � are
represented at � ¼ 0:4 GeV, correspondingly. As it is
clear from Figs. 3–5, the oscillations both of the critical
line and gaps are characteristic features of the model in the
finite volume. Clearly, these quantities oscillate strongly
versus �. One should also take into account that the gaps �
and � from Figs. 4–6 are really discontinuous functions
versus � in the points �0, �1, �2, etc.
Finally, let us discuss the influence of a nontrivial topol-

ogy on the values of particle density n�ð�Þ ¼ �@�La=@�

in the SC phase. In Fig. 7 its behavior versus � is presented
at fixed � ¼ 0:4 GeV in comparison with the particle
density at � ¼ 0 (L ¼ 1). It is clear from this figure that
at some finite values of L which correspond to values of �
from rather small vicinities of �k (k ¼ 2; 3; . . . ), the super-
conducting phase is realized at smaller particle densities
than at L ¼ 1 [in these cases the ratio n�ð�Þ=n�ð0Þ is less
than 1] and at the same value of � ¼ 0:4 GeV. It was
mentioned above that the SC phase may occur even at�<
�c if L is finite (see Fig. 3). It is interesting to note that in
these cases, the particle density can also reach rather small
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0.1 0.2 0.3 0.4 0.5 0.6 0.7

FIG. 3. Phase structure in the case of S1 � S1 � S1 space
topology with antiperiodic boundary conditions. The numbers
1, 2, and 3 denote the symmetric phase with � ¼ 0;� ¼ 0, the
chirally broken phase with � � 0;� ¼ 0, and the superconduct-
ing phase with � ¼ 0;� � 0, correspondingly. Here � ¼ �=L,
�c � 0:296 GeV, �0 � 0:375 GeV, �1 � 0:195 GeV.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1 0.2 0.3 0.4

FIG. 4. The gap � versus � ¼ �=L at � ¼ 0:18 GeV in the
case of S1 � S1 � S1 space topology with antiperiodic boundary
conditions. Here �0 � 0:375 GeV, �1 � 0:195 GeV, �2 �
0:149 GeV.
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values. For example, it turns out that the point ð� ¼
0:21; � ¼ 0:1255Þ GeV lies in the SC phase (see Fig. 3).
Numerical calculations show that for this set of parameters,
the density of particles n�ð�Þ inside SC matter is much

smaller than nc, where nc is the density at � ¼ �c and
L ¼ 1, since in this case we have n�ð�Þ � 0:36nc. These

facts might be understood by taking into account the results
of the papers [17,22], where, in particular, it was shown
that the actual baryonic chemical potential, i.e. the energy
per one baryon, increases with decreasing size L of a
system. Hence, for rather small values of the chemical
potential �, for example, at �<�c, by decreasing L, it
is in principle possible to reach the value of the actual
baryonic chemical potential at which the SC gap � is
opened, although in R3 space the superconducting phase
is not realized at the same value of �<�c.
Note that the abovementioned as well as the following

results should be taken with caution when � * �. The
reason is that in this case, the infrared cutoff � comes
closer to the ultraviolet one �, and thus the phase space
is decreased due to the presence of the � function, e.g., in
the expression (18).

B. Case of periodic boundary conditions

Applying the rule (17) with � ¼ 0 in the expres-
sion (14), we immediately obtain the TDP of the system
in the case of periodic (‘‘p’’) boundary conditions:

�Lpð�;�Þ ¼ �2

4G
þ �2

4H
� �3

�3

X1
i¼�1

X1
k¼�1

X1
l¼�1

�ð�2 � p2
ip � p2

kp � p2
lpÞ½Epþ

�ikl þ Ep�
�ikl�; (22)

where � ¼ �=L, Ep�
�ikl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEikl ��Þ2 þ �2
p

, Eikl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ip þ p2

kp þ p2
lp þ �2

q
, and pip ¼ 2i�, etc. In the periodic case, it

is very convenient to separate in each of the sums in (22) the contributions from zero modes, so the expression (22) can be
rearranged in the following way:
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FIG. 6. The gap � versus � at � ¼ 0:4 GeV in the case of
S1 � S1 � S1 space topology with antiperiodic boundary condi-
tions. The notations are the same as in Figs. 3–5.
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FIG. 7. Ratio of particle densities n�ð�yÞ=n�ð0Þ versus � at
� ¼ 0:4 GeV in the case of S1 � S1 � S1 space topology with
antiperiodic boundary conditions. [The quantities �k are pre-
sented in the text below Eq. (19).]
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FIG. 5. The gap � versus � at � ¼ 0:4 GeV in the case of
S1 � S1 � S1 space topology with antiperiodic boundary condi-
tions. Here a � 0:178 GeV, b � 0:279 GeV, and other nota-
tions are presented in Figs. 3 and 4.
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�Lpð�;�Þ ¼ �2

4G
þ �2

4H
� �3

�3
½Epþ

�000 þ Ep�
�000� �

6�3

�3

X1
i¼1

�ð�2 � p2
ipÞ½Epþ

�i00 þ Ep�
�i00�

� 12�3

�3

X1
i¼1

X1
k¼1

�ð�2 � p2
ip � p2

kpÞ½Epþ
�ik0 þ Ep�

�ik0�

� 8�3

�3

X1
i¼1

X1
k¼1

X1
l¼1

�ð�2 � p2
ip � p2

kp � p2
lpÞ½Epþ

�ikl þ Ep�
�ikl�: (23)

Now, as in the previous section, we interpret the quantities
Ep�
�ikl (Epþ

�ikl) in this expression as the energies of the
fermion (antifermion) quasiparticles, which can be labeled
again by a triple of integers ði; k; lÞ with i 
 k 
 l 
 0.
Clearly, the quasiparticles of the type (0,0,0) always con-
tribute to the expression (23), whereas the contribution of
the other energy levels depends on the � values. So, it is
convenient, as in the case with antiperiodic boundary con-
ditions, to divide the ð�;�Þ plane into strips:

!1 ¼ fð�;�Þ:� > �1g;
!2 ¼ fð�;�Þ:�1 > �> �2g; . . . ;
!n ¼ fð�;�Þ:�n�1 > �> �ng; . . . ;

(24)

where for the real quantities �k we use the same notations
as in Sec. III A, which now, however, take other values, i.e.
�1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
�2=4

p ¼ 0:325 GeV, �2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
�2=8

p � 0:223 GeV,
�3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=12

p � 0:188 GeV, etc.5 The regions !n in
(24) are constructed in such a way that in the strip !1,
only the fermion and antifermion levels (0,0,0) contribute
to the TDP (23), where it looks like

�Lp1ð�;�Þ ¼ �2

4G
þ �2

4H
� �3

�3
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ�Þ2 þ �2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð���Þ2 þ �2

q
�: (25)

[In this region there are no terms of the infinite sums of (23)
which supply a nonzero contribution to the TDP.] In the
strip !2, the energy levels (1,0,0) of fermion and antifer-
mion quasiparticles are switched on in addition, in the strip
!3, the energy levels (1,1,0) are switched on in addition,
etc. Investigating the global minimum point behavior of the
TDP (23) in each of the strips (24), it is possible to obtain
the phase structure of the model in the whole ð�;�Þ plane,
which is presented in Fig. 8. The behavior of the gaps �, �
and particle density n�ð�Þ versus � in the periodic case are
qualitatively the same as in the case with antiperiodic
boundary conditions (see Figs. 4–7).

IV. CASE OF R2 � S1 SPACE TOPOLOGY

In the present section, we continue the investigation of
the difermion condensation in the spaces with nontrivial
topology, this time when it is in the form of R2 � S1. For
simplicity, it is supposed here that the z axis is compacti-
fied and fermion fields satisfy some boundary conditions of
the form (the x; y coordinates are not restricted):

c kðt; x; y; zþ LÞ ¼ ei��c kðt; x; y; zÞ: (26)

As in the previous section, we shall use only two values of
the parameter �: � ¼ 0 for the periodic boundary condi-
tion and � ¼ 1 for the antiperiodic one. Recall that L is the
length of the circumference S1. Note also that the consid-
eration of any physical system in the abovementioned
space topology is equivalent to a restriction of the system
inside an infinite layer with thickness L. In this case, to
obtain the thermodynamic potential �L�ðM;�Þ of the
initial system, one again simply replaces the integration
over p3 in (14) by an infinite series, using the analogous
rule:
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FIG. 8. Phase structure in the case of S1 � S1 � S1 space
topology with periodic boundary conditions. Here �1 ¼
0:325 GeV, �2 � 0:223 GeV, and other notations are given in
Fig. 3.

5As in the antiperiodic case, in the periodic case the real

quantities �ikl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=Nikl

p
, where Nikl ¼ 4ði2 þ k2 þ l2Þ might

be associated with corresponding energy level ði; k; lÞ. The real
expressions �1 > �2 > �3 > � � � in (24) are just the quantities
�ikl arranged in a decreasing order.
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Z 1

�1
dp3

2�
fðp3Þ ! 1

L

X1
n¼�1

fðpn�Þ;

pn� ¼ �

L
ð2nþ �Þ; n ¼ 0;�1;�2; . . .

(27)

A. Case of antiperiodic boundary conditions

Applying the rule (27) with � ¼ 1 in (14), one has for
the TDP �La of dense cold matter in a space of R2 	 S1

topology with antiperiodic boundary conditions the follow-
ing expression:

�Lað�;�Þ ¼ �2

4G
þ �2

4H
� 2�

�

X1
i¼0

Z d2p

ð2�Þ2
	�ð�2 � ~p2 � p2

iaÞ½Eaþ
�i þ Ea�

�i �; (28)

where � ¼ �=L, Ea�
�i ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEi ��Þ2 þ�2

p
, Ei ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p2 þ p2
ia þ �2

q
, and pia ¼ �ð2iþ 1Þ. Recall that the

quantities Ea�
�i (Eaþ

�i ) are the energies of fermion (antifer-

mion) quasiparticles, which are labeled by a discrete index
i (i ¼ 0; 1; 2 . . . ) and by a continuous quantity j ~pj.
Integrating in (28) over two-dimensional momenta ~p, we
obtain

�Lað�;�Þ ¼ �2

4G
þ �2

4H
þ �

6�2
�

�
�� �

2�

�
�að�;�Þ;

(29)

where

�að�;�Þ ¼ ðNa þ 1Þf3�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
þ�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
þ�Þ2 þ �2

q
� 2½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
þ�Þ2 þ �2�3=2g

þ XNa

n¼0

8><
>:2½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
na þ �2

q
þ�Þ2 þ�2�3=2 � 3�ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
na þ �2

q
þ�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
na þ �2

q
þ�Þ2 þ �2

r

þ 3��2 ln

������������
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
þ�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
þ�Þ2 þ �2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
na þ �2

p þ�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
na þ �2

p þ�Þ2 þ�2

q
������������
9>=
>;þ ð� ! ��Þ; (30)

and Na � ½���
2� � (recall, [x] means the integer part of a real

number x).
It is clear from the structure of the TDP (28)–(30) that to

obtain the behavior of its global minimum point versus �
and � it is very convenient to divide again the plane ð�;�Þ
into an infinite set of strips (20), this time with
�k ¼ �=ð2kþ 1Þ.6 So, due to the presence of the � func-
tion in (29), in the region !0, i.e. at � > �0 � �, the TDP
(28) and (29) has a trivial form, i.e.

�Lað�;�Þjð�;�Þ2!0
¼ �2

4G
þ �2

4H
; (31)

whose global minimum point (� ¼ 0, � ¼ 0) corresponds
to the symmetric phase. In the region !1, i.e. at �0 > �>
�1, the integer Na from (30) is equal to zero, hence only
quasiparticles with the energies Ea�

�0 contribute to the TDP

in this case. Studying the behavior of the GMP of the TDP
versus � and �, we conclude that in the strip !1, three
phases, the symmetric phase 1, the phase with broken
chiral symmetry (phase 2), and the superconducting phase 3
occur (see the part of Fig. 9 that corresponds to �0 > �>

�1). In the strip!2, we have in the expression (30)Na ¼ 1,
so here the quasiparticle energies Ea�

�1 contribute to the

TDP in addition, etc. However, our numerical calculations
show that in each of the strips !2; !3; . . . only two phases,
phase 2 and the SC phase 3, of the model are realized. The
boundary between the phase with broken chiral symmetry,
phase 2, and the superconducting one ,phase 3, again
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FIG. 9. Phase structure in the case of R2 � S1 space topology
with antiperiodic boundary conditions. Here �k ¼ �=ð2kþ 1Þ
(k ¼ 0; 1; 2; 3), and other notations are given in Fig. 3.

6One should not become confused by the fact that we use the
same notation for the boundaries �k of these strips in different
cases. Indeed, as it is clear from the text, the value of each �k

depends strongly on both the space topology and boundary
conditions.
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oscillates when � ! 0 (see Fig. 9). It turns out that in
addition to the critical curve the gaps � and � oscillate
versus � at fixed values of � (see Figs. 10 and 11).
Comparing these figures with Figs. 4 and 5, we see that
the more dimensions are compactified, the more sharp
oscillations of physical quantities occur. In particular, it
is clear from Figs. 10 and 11 that in the case under
consideration, the gaps � and � are some continuous
functions versus �, whereas in the case with S1 � S1 � S1

space topology, these quantities have discontinuities in the
points �0, �1, etc.

Finally, in Fig. 12, the ratio of particle densities
n�ð�Þ
n�ð0Þ

versus � inside the SC phase is presented at � ¼ 0:4 GeV.
It is clear that in small vicinities around �k (k ¼ 2; 3; ::),
the density at � � 0 is less than the particle density at � ¼

0. It seems intuitively clear that the smaller a particle
density is, the easier a corresponding state of the system
might be created. So, to reduce the efforts in obtaining the
SC phase, one could simply fix the � parameter not far
from one of the �k values. Hence finite-size effects might
promote the transition of a physical system into its super-
conducting phase.

B. Case of periodic boundary conditions

Clearly, to obtain the TDP of the system �Lp in this

case, it is necessary to use in (14) the rule (27) with � ¼ 0.
As a result, we have

�Lpð�;�Þ ¼ �2

4G
þ �2

4H
� �

�

Z d2p

ð2�Þ2
	 	ð�2 � j ~pj2Þ½Epþ

�0 þ Ep�
�0 �

� 2�

�

X1
n¼1

Z d2p

ð2�Þ2
	 	ð�2 � j ~pj2 � p2

npÞ½Ep�
�n þ Epþ

�n �; (32)

where � ¼ �=L, Ep�
�n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEn ��Þ2 þ�2

p
, En ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p2 þ p2
np þ �2

q
, pnp ¼ 2n� (n ¼ 0; 1; 2 . . . ). Recall

that the quantities Ep�
�n (Epþ

�n ) are the energies of fermion

(antifermion) quasiparticles, which are labeled by a dis-
crete index n (n ¼ 0; 1; 2 . . . ) and by a continuous quantity
j ~pj, in addition. We find it convenient to separate in (32)
the contribution from the zero modes, i.e. the contribution
from quasiparticles with n ¼ 0. Integrating in (32) over
two-dimensional momenta ~p, we have
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FIG. 10. The gap � versus � at � ¼ 0:2 GeV in the case of
R2 � S1 space topology with antiperiodic boundary conditions.
Here �k ¼ �=ð2kþ 1Þ (k ¼ 1; 2; 3).
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FIG. 11. The gap � versus � at � ¼ 0:4 GeV in the case of
R2 � S1 space topology with antiperiodic boundary conditions.
Here �k ¼ �=ð2kþ 1Þ (k ¼ 1; 2; 3).
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FIG. 12. Ratio of particle densities n�ð�yÞ=n�ð0Þ versus �
at � ¼ 0:4 GeV in the case of R2 � S1 space topology with
antiperiodic boundary conditions. Here �k ¼ �=ð2kþ 1Þ (k ¼
1; 2; 3).
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�Lpð�;�Þ ¼ �2

4G
þ �2

4H
þ �

12�2
Fð�;�Þ þ �

6�2
�

�
�

2�
� 1

�
�pð�;�Þ; (33)

where

Fð�;�Þ ¼ 2½ð�þ�Þ2 þ �2�3=2 � 2½ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
þ�Þ2 þ�2�3=2 þ 3�ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
þ�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
þ�Þ2 þ �2

q

� 3�ð�þ�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ�Þ2 þ �2
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(34)
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9>=
>;þ ð� ! ��Þ; (35)

and Np � ½�2�� is the integer part of the real number in the
square bracket.

As in Section III B, we again divide the ð�;�Þ plane into
an infinite set of strips !k (24), where in the present case
we have �k ¼ �=ð2kÞ (k ¼ 1; 2; . . . ). Then, in the region

!1 the zero-energy levels Ep�
�0 of quasiparticles contribute

to the TDP (32), where it looks like

�Lpð�;�Þjð�;�Þ2!1
¼ �2

4G
þ �2

4H
þ �

12�2
Fð�;�Þ (36)

[here Fð�;�Þ is given in (34)]. In the region !2, the next

energy levels Ep�
�1 are switched on in addition, so in the

expression for the function �pð�;�Þ (35) we have Np ¼
1, etc. It turns out that with each region !k (k 
 2), the
value Np ¼ k� 1 in (35) is associated. As a result, in !k

all the quasiparticle energy levels with quantum numbers
n ¼ 0; 1; . . . ; k� 1 contribute to the expression for the
TDP. Studying numerically and step-by-step the behavior
of the GMP of the TDP (33) in the strips !0; !1; !2; . . . ,
we obtain the ð�;�Þ phase portrait of the initial NJL model
which is presented in Fig. 13. In contrast to the phase
portrait in the antiperiodic case (see Fig. 9), it has only
two phases, the chirally broken phase 2 and the super-
conducting phase 3.
Notice that in the case with periodic boundary condi-

tions the behavior of the gaps �, � and particle density
n�ð�Þ are qualitatively the same as in the antiperiodic case

(see Figs. 10–12).

V. SUMMARYAND DISCUSSION

In the present paper, we have investigated the influence
of finite-size effects on the superconductivity (SC) phe-
nomenon which might exist in dense cold fermionic matter.
Note that in the SC phase, the Uð1Þ charge group is
spontaneously broken down due to Cooper pair (difermion)
condensation. It is well known that quantum fluctuations of
fields can destroy symmetry breaking in a finite volume, so
studying this effect requires us to be sure that such fluctua-
tions and their corresponding next to leading order correc-
tions will not spoil the leading order mean field results.
Concerning the application of usual QCD-like NJL models
to the description of CSC in the mean field approximation,
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FIG. 13. Phase structure in the case of R2 � S1 space topology
with periodic boundary conditions. Here �k ¼ �=ð2kÞ (k ¼
1; 2; 3), and the numbers 2 and 3 denote the chirally broken
and SC phases.
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a small perturbative expansion parameter guaranteeing the
suppression of quantum fluctuations is absent. Thus, in this
case there is no confidence that quantum fluctuations are in
general negligible and, particularly in the case of finite
systems, that they could not destroy color symmetry break-
ing. These obstacles were the main reason why we decided
to consider, instead of a QCD-like quark model, the ‘‘toy’’
NJL model (1) for fermions, which seems to us more
technically adequate for studying the influence of finite
volume effects on the Cooper pairing. In fact, in this model
at large N, a small expansion parameter 1=N appears, so
the next to leading order corrections in 1=N are certainly
negligible. By this reason, quantum fluctuations of fields
become suppressed and cannot destroy spontaneous sym-
metry breaking for the considered fermion system in a
finite volume (see also the discussion in Sec. I).

Let us summarize in more detail some of the main
results. First, it was shown in the leading order of the
1=N expansion that at T ¼ 0; L ¼ 1 (L is the linear size
of the system), there is a phase transition in the considered
fermion model from the chiral symmetry breaking phase 2
to a superconducting phase 3 at the critical value of the
chemical potential � ¼ �c � 0:3 GeV. Next, we have
studied in the leading order over 1=N the phase structure
of this model both in the space with topology S1 � S1 � S1

and R2 � S1, taking into account periodic and antiperiodic
boundary conditions for fermion fields. It turns out that for
all cases, the critical line between phases 2 and 3 as well as

the gaps �, � and the particle density n�ð�Þ are oscillating
functions versus �� 1=L. Generally, we found that the
more spatial dimensions are compactified, the stronger the
oscillations that occur.
Secondly, it is interesting to note that at finite L the

superconducting phase 3 might be realized at sufficiently
smaller values of the chemical potential � and particle
density n�ð�Þ, than at L ¼ 1. Indeed, as it is clear from,

e.g., Figs. 3 and 13, for some values of � the phase 3 occurs
at � ¼ 0:2 GeV or even smaller values. Moreover, as it is
clear from the discussion at the end of Section III A, for
such sufficiently small values of � the particle density
inside the SC phase might be as small as � 0:4nc, where
nc is the density at which SC is realized at L ¼ 1. Hence,
the compactification procedure itself might shift the SC
phase transition to smaller particle densities.
Hopefully, the above investigations could motivate other

studies of finite-size effects and eventually find some
physical applications.
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