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The properties of the two-flavored Gross-Neveu model with nonzero current quark mass are inves-

tigated in the (1þ 1)-dimensional space-time at finite isospin �I as well as quark number � chemical

potentials and zero temperature. The consideration is performed in the limit Nc ! 1, i.e., in the case with

an infinite number of colored quarks. In the plane of parameters �I , � a rather rich phase structure is

found, which contains phases with and without pion condensation. We have found a great variety of one-

quark excitations of these phases, including gapless and gapped quasiparticles. Moreover, the mesonic

mass spectrum in each phase is also investigated.
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I. INTRODUCTION

During the last decade great attention was paid to the
investigation of the QCD phase diagram in terms of bar-
yonic as well as isotopic (isospin) chemical potentials.
First of all, this interest is motivated by experiments on
heavy-ion collisions, where we have to deal with dense
baryonic matter which has an evident isospin asymmetry,
i.e., different neutron and proton contents of initial ions.
Moreover, the dense hadronic/quark matter inside compact
stars is also isotopically asymmetric. Generally speaking,
one of the important QCD applications is just to describe
dense and hot baryonic matter. However, in the above-
mentioned realistic situations the density is rather small,
and weak coupling QCD analysis is not applicable. So,
different nonperturbative methods or effective theories
such as chiral effective Lagrangians and especially
Nambu-Jona-Lasinio (NJL) type models [1] are usually
employed for the consideration of the properties of dense
and hot baryonic matter under heavy-ion experimental and/
or compact star conditions, i.e., in the presence of such
external conditions as temperature and chemical poten-
tials, magnetic field, finite size effects etc. (see, e.g., the
papers [2–9] and references therein). In particular, the
color superconductivity [4,5] as well as parity violation
and charged pion condensation [10–15] phenomena of
dense quark matter were investigated in the framework of
these QCD-like effective models.

It is necessary to note that an effective description of
QCD in terms of NJL models, i.e., through an employment
of four-fermion theories in (3þ 1)-dimensional space-
time, is usually valid only at rather low energies and
densities. Besides, at present time there is the consensus
that another class of theories, the set of (1þ 1)-
dimensional Gross-Neveu (GN) type models [16,17], can
also be used for a reasonable qualitative consideration of
the QCD properties without any restrictions on the energy/
density values, which is in an encouraging contrast with

NJL models. Indeed, the GN-type models are renormaliz-
able; the asymptotic freedom and spontaneous chiral sym-
metry breaking are other properties inherent both for QCD
and GN theories, etc. In addition, the�� T phase diagram
is qualitatively the same in the QCD and GN model [18–
22] (here � is the quark number chemical potential and T
is the temperature). Note also that GN-type models are
suitable for the description of physics in quasi one-
dimensional condensed matter systems like polyacetylene
[23]. Thus, due to the relative simplicity of GN models in
the leading order of the large Nc-expansion (Nc is the
number of colored quarks), their usage is convenient for
the application of nonperturbative methods in quantum
field theory [24].
Before investigating different physical effects relevant

to a real (3þ 1)-dimensional world in the framework of
two-dimensional GNmodels, let us recall that there is a no-
go theorem by Mermin-Wagner-Coleman forbidding the
spontaneous breaking of continuous symmetries in two
dimensions [25]. This theorem is based on the fact that in
(1þ 1)-dimensional space-time the Green function (corre-
lator) of two scalar fields has at large distances a behavior

jx� yj�1=Nc . Thus, if we take the limit jx� yj ! 1 first,
the correlator vanishes at finite Nc and, according to the
cluster property, we formally obtain a zero vacuum expec-
tation value of the scalar field, i.e. a prohibition of sponta-
neous symmetry breaking. However, there is a way to
overcome this no-go theorem. Indeed, if the limit Nc !
1 is taken first, then for jx� yj ! 1 we formally obtain a
nonzero vacuum expectation value for the scalar field, i.e.,
the possibility for spontaneous symmetry breaking. It
means that just the leading order of the large Nc approxi-
mation supplies us in any (1þ 1)-dimensional model with
a consistent field theory in which spontaneous symmetry
breaking might occur. At present time this fact is well
understood (see, e.g., the discussion in [20–22]). This
result restricts the range of validity of the no-go theorem
to the finite Nc-case only. Clearly, since the no-go theorem
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does not work in the limitNc ! 1, the investigation of any
low-dimensional model in the leading order at Nc ! 1 is
much more physically appealing than the consideration of
the model at finite Nc.

By this reason, such phenomena of dense QCD as color
superconductivity (spontaneous breaking of the color sym-
metry) or charged pion condensation (spontaneous break-
ing of the continuous isospin symmetry) might be
simulated in terms of simpler (1þ 1)-dimensional GN-
type models in the leading order of the large Nc approxi-
mation (see, e.g., [21,26], correspondingly).

In our previous paper [26] the phase diagram of the
(1þ 1)-dimensional GN model with two massless quark
flavors was investigated under the constraint that quark
matter occupies a finite space volume (see also the relevant
papers [27]). In particular, the charged pion condensation
phenomenon in cold quark matter with zero baryonic
density, i.e., at � ¼ 0, but nonzero isotopic density, i.e.,
with nonzero isospin chemical potential �I, was studied
there in the large Nc-limit. In contrast, in the present paper
we consider, in the leading order of the 1=Nc-expansion,
the phase portrait of the above-mentioned massive GN
model in a more general case, where, for simplicity, the
temperature is taken to be zero, but both isospin and quark
number chemical potentials are nonzero, i.e., �I � 0 and
� � 0, and the space-time is considered to have the usual
topology, R1 � R1. Our consideration is based on the case
of homogeneous condensates (an extension to inhomoge-
neous condensates in the case of �I ¼ 0 was recently
considered in [22,28]). We suppose that these investiga-
tions will shed some new light on the physics of cold dense
and isotopically asymmetric quark matter which might
exist in compact stars, where baryon density is obviously
nonzero (i.e., � � 0).

The paper is organized as follows. In Secs. II and III the
effective action and thermodynamic potential of the two-
flavored massive Gross-Neveu model are obtained in the
presence of a quark number as well as isotopic chemical
potentials. In Sec. IV the phase structure of the model is
investigated both in different particular cases (� � 0,
�I ¼ 0 etc.) and in the general case of � � 0, �I � 0. It
turns out that at �I � 0 and rather small values of �, the
gapped pion condensed phase (PC) occurs. However, at
larger values of � several normal dense quark matter
phases (without PC) are found to exist with different
quasiparticle excitation properties of their ground states.
In Sec. V the meson mass spectrum of each phase is
discussed. Some technical details concerning the effective
action and quark propagator are relegated to two
Appendices.

II. THE MODEL AND ITS EFFECTIVE ACTION

We consider a (1þ 1)-dimensional model which de-
scribes dense quark matter with two massive quark flavors
(u and d quarks). Its Lagrangian has the form

L ¼ �q

�
��i@� �m0 þ��0 þ�I

2
�3�

0

�
q

þ G

Nc

½ð �qqÞ2 þ ð �qi�5 ~�qÞ2�; (1)

where the quark field qðxÞ � qi�ðxÞ is a flavor doublet (i ¼
1, 2 or i ¼ u, d) and color Nc-plet (� ¼ 1; . . . ; Nc) as well
as a two-component Dirac spinor (the summation in (1)
over flavor, color, and spinor indices is implied); �k (k ¼ 1,
2, 3) are Pauli matrices; the quark number chemical po-
tential � in (1) is responsible for the nonzero baryonic
density of quark matter, whereas the isospin chemical
potential �I is taken into account in order to study prop-
erties of quark matter at nonzero isospin densities (in this
case the densities of u and d quarks are different).
Evidently, the model (1) is a simple generalization of the
original (1þ 1)-dimensional Gross-Neveu model [16]
with a single massless quark color Nc-plet to the case of
two massive quark flavors and additional chemical poten-
tials. As a result, in the case under consideration we have a
modified flavor symmetry group, which depends essen-
tially on whether the bare quark mass m0 and isospin
chemical potential �I take zero or nonzero values.
Indeed, at �I ¼ 0, m0 ¼ 0 the Lagrangian (1) is invariant
under transformations from the chiral SULð2Þ � SURð2Þ
group. Then, at �I � 0, m0 ¼ 0 this symmetry is reduced
to UI3Lð1Þ �UI3Rð1Þ, where I3 ¼ �3=2 is the third compo-

nent of the isospin operator (here and above the subscripts
L, R mean that the corresponding group acts only on left-,
right-handed spinors, respectively). Evidently, this symme-
try can also be presented asUI3ð1Þ �UAI3ð1Þ, whereUI3ð1Þ
is the isospin subgroup and UAI3ð1Þ is the axial isospin

subgroup. Quarks are transformed under these subgroups
as q ! expði��3Þq and q ! expði��5�3Þq, respectively.
In the case m0 � 0, �I ¼ 0 the Lagrangian (1) is invariant
with respect to the SUIð2Þ, which is a diagonal subgroup of
the chiral SULð2Þ � SURð2Þ group. Finally, in the most
general case with m0 � 0, �I � 0 the initial model (1) is
symmetric under the above-mentioned isospin subgroup
UI3ð1Þ. In addition, in all foregoing cases the model is color

SUðNcÞ invariant.
The linearized version of the Lagrangian (1), which

contains composite bosonic fields �ðxÞ and �aðxÞ (a ¼ 1,
2, 3), has the following form:

~L ¼ �q

�
��i@� �m0 þ��0 þ�I

2
�3�

0 � �

� i�5�a�a

�
q� Nc

4G
½��þ �a�a�: (2)

From the Lagrangian (2) one gets the following constraint
equations for the bosonic fields

�ðxÞ ¼ �2
G

Nc

ð �qqÞ; �aðxÞ ¼ �2
G

Nc

ð �qi�5�aqÞ: (3)

Obviously, the Lagrangian (2) is equivalent to the
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Lagrangian (1) when using the constraint Eqs. (3).
Furthermore, it is clear that the bosonic fields (3) are
transforming under the isospin UI3ð1Þ subgroup in the

following manner:

UI3ð1Þ: � ! �; �3 ! �3;

�1 ! cosð2�Þ�1 þ sinð2�Þ�2;

�2 ! cosð2�Þ�2 � sinð2�Þ�1; (4)

i.e., the expression (�2
1 þ �2

2) remains unchanged under an
action of the isospin subgroup UI3ð1Þ.

There is a common footing for obtaining both the ther-
modynamic potential and one-particle irreducible Green
functions of bosonic �ðxÞ and �aðxÞ fields (3) which is
based on the effective action Seffð�;�aÞ of the model. In
the leading order of the large Nc-expansion (corresponding
to the one fermion-loop or mean field approximation), this
quantity is defined in terms of the Lagrangian (2) through
the relation

expðiSeffð�;�aÞÞ ¼ N0 Z ½d �q�½dq� expði
Z

~Ld2xÞ; (5)

where N0 is a normalization constant. It is clear from (2)
and (5) that

S effð�;�aÞ ¼ �Nc

Z �2 þ �2
a

4G
d2xþ ~Seff ; (6)

where the quark contribution to the effective action, i.e.,

the term ~Seff in (6), is given by

expði~SeffÞ ¼ N0 Z ½d �q�½dq� exp
�
i
Z

�qDqd2x

�
¼ detD:

(7)

Here we used the notations

D ¼ i��@� �m0 þ��0 þ ��3�
0 � �� i�5�a�a (8)

and � ¼ �I=2. Note also that D is a nontrivial operator in
coordinate (x), spinor (s), and flavor (f) spaces, but it is
proportional to the unit operator in the Nc-dimensional
color (c) space. Then, using the general formula detD ¼
expTrxcfs lnD, one obtains the following expression for the

effective action:

S effð�;�aÞ ¼ �Nc

Z �2 þ �2
a

4G
d2x� iNc Trsfx lnD;

(9)

where we have taken into account that the trace of the
operator lnD over the color space is proportional to Nc.

Starting from (9), one can define the thermodynamic
potential (TDP) of the model in the mean-field approxima-
tion:

S eff jð�;�a¼constÞ ¼ �Nc��;�ð�;�aÞ
Z

d2x: (10)

The ground state expectation values (mean values) of the
bosonic fields, h�ðxÞi � �o and h�aðxÞi � �o

a, are solu-
tions of the gap equations for the TDP��;�ð�;�aÞ (in our
approach all ground state expectation values do not depend
on coordinates x):

@��;�

@�
¼ 0;

@��;�

@�a

¼ 0; where a ¼ 1; 2; 3: (11)

In particular, it follows from (11) that ifm0 � 0 then �o
3 ¼

0. In addition, one can put �o
2 ¼ 0, since the effective

action depends on �1 and �2 fields through the combina-
tion (�2

1 þ �2
2). Next, let us perform the following shift of

bosonic fields in (9): �ðxÞ ! �ðxÞ þ �o, �1ðxÞ !
�1ðxÞ þ �o

1 , whereas the other bosonic fields, �2;3, stay

unshifted. (Obviously, after shifting the new bosonic fields
�ðxÞ, �aðxÞ now denote the small quantum fluctuations
around the mean values �o, �o

a of mesons rather than the
original fields (3)). Moreover, we use the notations �o �
M�m0 and �o

1 � �. In this case

D ¼ ði��@� �Mþ��0 þ ��3�
0 � i�5��1Þ

� ð�ðxÞ þ i�5�aðxÞ�aÞ
� S�1

0 � ð�ðxÞ þ i�5�aðxÞ�aÞ; (12)

where S0 is the quark propagator which is a 2� 2matrix in
the flavor space, presented in Appendix B. Then, expand-
ing the obtained expression into a Taylor-series up to
second order of small bosonic fluctuations �ðxÞ, �aðxÞ,
we have

S effð�;�aÞ ¼ Sð0Þ
eff þ Sð2Þ

effð�;�aÞ þ � � � ; (13)

where (due to the gap equations, the linear term in meson
and diquark fields is absent in (13))

1

Nc

Sð0Þ
eff ¼ �

Z
d2x

ðM�m0Þ2 þ�2

4G
� iTrsfx lnðS�1

0 Þ

� ���;�ðM;�Þ
Z

d2x; (14)

1

Nc

Sð2Þ
effð�;�aÞ ¼ �

Z
d2x

�2 þ �2
a

4G

þ i

2
TrsfxfS0ð�þ i�5�a�aÞ

� S0ð�þ i�5�a�aÞg: (15)

The TDP ��;�ðM;�Þ from (14) will be calculated in the

next section, where on the basis of this function the phase
structure of the GN model (1) in the leading order over
1=Nc is considered. Note also that in (13) and (15) the
bosonic fluctuation fields �, �a are really the coordinate
dependent quantities. The trace of the S0-operator and the
products of�,�a-fields in (15) should be understood in the
sense of formula (A2) (see Appendix A). Note the remark-
able property that the effective action (15) is a generating
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functional of two-point and one-particle irreducible (1PI)
Green functions of �- and �-mesons. Indeed:

�XYðx� yÞ ¼ � �2Sð2Þ
eff

�YðyÞ�XðxÞ ; (16)

where XðxÞ, YðxÞ ¼ �ðxÞ, �aðxÞ, and �XYðx� yÞ is the 1PI
Green function of the fields XðxÞ, YðxÞ. Variational deriva-
tives in (16) should be taken in accordance with the general
formula (A3) (see Appendix A). In the following, on the
basis of these Green functions we study the meson mass
spectrum in different phases of the model.

III. THERMODYNAMIC POTENTIAL

The Fourier transformation �S�1
0 ðpÞ of the inverse quark

propagator S�1
0 (12) has the form:

�S�1
0 ðpÞ ¼ p6 þ��0 þ ��3�

0 �M� i�5��1: (17)

Clearly, in the direct product of spinor and flavor spaces it
is a 4� 4 matrix, which has four eigenvalues:

	1;2;3;4¼�M

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0þ�Þ2�p2

1��2þ�2�2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0þ�Þ2��2

qr
:

(18)

Then, applying the general formula (A5) to the expression
(14) for the thermodynamic potential, one gets:

��;�ðM;�Þ ¼ ðM�m0Þ2 þ�2

4G
þ i

X4
i¼1

Z d2p

ð2�Þ2 lnð	iÞ

¼ ðM�m0Þ2 þ�2

4G
þ i

Z d2p

ð2�Þ2
� lnf½ðp0 þ�Þ2 � ðEþ

� Þ2�
� ½ðp0 þ�Þ2 � ðE�

� Þ2�g; (19)

where E�
� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE�Þ2 þ �2

p
, E� ¼ E� �, � ¼ �I=2 and

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þM2

q
. The system of gap equations directly

follows from (19):

0 ¼ @��;�ðM;�Þ
@M

� M�m0

2G
� 2iM

Z d2p

ð2�Þ2E
�

Eþ

ðp0 þ�Þ2 � ðEþ
� Þ2

þ E�

ðp0 þ�Þ2 � ðE�
� Þ2

�
;

0 ¼ @��;�ðM;�Þ
@�

� �

2G
� 2i�

Z d2p

ð2�Þ2
�

1

ðp0 þ�Þ2 � ðEþ
� Þ2

þ 1

ðp0 þ�Þ2 � ðE�
� Þ2

�
: (20)

The TDP ��;�ðM;�Þ is symmetric under the transforma-

tions� ! �� and/or�I ! ��I. Hence, it is sufficient to
consider only the region � � 0, �I � 0. In this case, one
can integrate in (19) over p0 with the help of the formulaZ dp0

2�
ln½ðp0 þ aÞ2 � b2� ¼ i

2
fja� bj þ jaþ bjg

(which is valid up to an infinite constant independent of
quantities a, b) and obtain:

��;�ðM;�Þ ¼ ðM�m0Þ2 þ �2

4G
�
Z 1

�1
dp1

2�
fEþ

� þ E�
�

þ ð�� Eþ
� Þ
ð�� Eþ

� Þ
þ ð�� E�

� Þ
ð�� E�
� Þg; (21)

where 
ðxÞ is the Heaviside theta-function. In a similar
way, the system of gap Eqs. (20) is transformed to the
following one:

0 ¼ @��;�ðM;�Þ
@M

� M�m0

2G
�M

Z 1

�1
dp1

2�E

�

ðEþ

� ��ÞEþ

Eþ
�

þ 
ðE�
� ��ÞE�

E�
�

�
; (22)

0 ¼ @��;�ðM;�Þ
@�

� �

2G
� �

Z 1

�1
dp1

2�

�

ðEþ

� ��Þ
Eþ
�

þ 
ðE�
� ��Þ
E�
�

�
: (23)

The coordinates (gap values) M and � of the global
minimum point of the TDP (21) supply us with two ground
state expectation values h �qqi and h �qi�5�1qi, respectively,
through the relations M ¼ m0 þ h�i, � ¼ h�1i and for-
mulas (3). In particular, if the gap � is equal to zero, the
ground state of the model is isotopically symmetric and
there is no condensation of charged pions. However, if� �
0, then the ground state describes the phase with charged
pion condensation, where the isospin UI3ð1Þ symmetry is

spontaneously broken. In this phase the space parity is also
spontaneously broken. Note also that the physical essence
of the other gap M is the dynamical quark mass which is
not equal to the bare mass m0, evidently.
It is clear that the TDP (21) is an ultraviolet divergent

quantity, so one should renormalize it, using a special
dependence of the bare quantities such as the bare coupling
constant G and the bare quark mass m0 on the cutoff
parameter � (� restricts the integration region in the
divergent integrals, jp1j<�). The renormalization proce-
dure for the simplest massive GN model was already
discussed in the literature, see, e.g., in [19,20,29]. In a
similar way, it is easy to see that, cutting of the divergent
integral in (21) and using the substitution G � Gð�Þ and
m0 � mGð�Þ, where
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1

2Gð�Þ ¼ 1

�

Z �

��
dp1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ p2
1

q

¼ 2

�
ln

��þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ�2
q
M0

�
(24)

and m is a new free finite renormalization-invariant mas-
sive parameter1 (which does not depend on the cutoff�), it
is possible to obtain for the TDP (21) a finite
renormalization-invariant expression. Namely,

��;�ðM;�Þ ¼ lim
�!1

��;�ðM;�;�Þ; (25)

where

��;�ðM;�;�Þ ¼ M2 þ�2

4Gð�Þ �mM

2
�
Z �

��

dp1

2�

� fEþ
� þ E�

� þ ð�� Eþ
� Þ
ð�� Eþ

� Þ

þ ð�� E�
� Þ
ð�� E�

� Þg þ
�2

�
: (26)

(To obtain (26) we have omitted the unessential constant
m2

0

4G

as well as added another one, �2

� .) In (24) the cutoff

independent quantity M0 is the dynamically generated
quark mass in the vacuum, i.e. at � ¼ 0 and�I ¼ 0, taken
in the chiral limit, i.e. at m0 ¼ 0 (see below). (The renor-
malized expressions for the gap equations are obtained in
the limit � ! 1, if the replacements G ! Gð�Þ, m0 !
mGð�Þ and jp1j<� are done in (22) and (23), or by a
direct differentiation of the expression (25).) The expres-
sion (26) can also be presented in the alternative form

��;�ðM;�;�Þ ¼ V0ðM;�;�Þ �mM

2
�
Z �

��

dp1

2�

� fEþ
� þ E�

� � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þM2 þ �2

q
þ ð�� Eþ

� Þ
ð�� Eþ
� Þ

þ ð�� E�
� Þ
ð�� E�

� Þg; (27)

where

V0ðM;�;�Þ ¼M2 þ�2

4Gð�Þ
� 1

�

Z �

��
dp1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þM2 þ�2

q
þ�2

�
: (28)

Obviously, the integral in (27) is convergent at � ! 1.
Since

lim
�!1

V0ðM;�;�Þ ¼ M2 þ�2

2�

�
ln

�
M2 þ �2

M2
0

�
� 1

�

� V0ðM;�Þ; (29)

one can easily obtain from (25), (27), and (29) the follow-
ing finite renormalization-invariant expression for the
TDP:

��;�ðM;�Þ ¼ V0ðM;�Þ �mM

2
�
Z 1

�1
dp1

2�

� fEþ
� þ E�

� � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þM2 þ �2

q
þ ð�� Eþ

� Þ
ð�� Eþ
� Þ

þ ð�� E�
� Þ
ð�� E�

� Þg: (30)

Note that the integral in (30) is convergent. In the particular
case of � ¼ 0, �I ¼ 0, and m ¼ 0, i.e., for the massless
GN model in the vacuum, it follows from (30):

��;�ðM;�Þj�¼0;�¼0;m¼0 ¼M2 þ�2

2�

�
ln

�
M2 þ�2

M2
0

�
� 1

�
:

(31)

Since for a strongly interacting system the space-parity in
the vacuum is expected to be a conserved quantity, we put
� equal to zero in (31). As a result, the global minimum of
the TDP (31) lies in the point M ¼ M0, which means that
in the vacuum and at m0 ¼ 0 the dynamically generated
quark mass is just the parameter M0 introduced in (24).
However, in the general case, i.e., at nonzero values of the
chemical potentials, the dynamical quark mass depends
certainly on �, �I and obeys the system of the gap
Eqs. (22) and (23) (or (20)). Another free parameter of
the massive GN model, the quantity m, is not directly
related to the quark mass, but rather to the mass of
�-mesons.
In the following, when studying the phase structure or

the meson mass spectrum, the quantityM0 is still treated as
a free parameter, however the massive parameter of the
model, m � �M0=�, is fixed by � ¼ �0 � 0:17. In this
case the vacuum properties of the massive GN model
resemble the situation in some NJL-type models in realistic
(3þ 1)-space-time (for a more detailed discussion, see
Sec. IVC).
For the forthcoming investigations we need also the

expressions for the density of quark number nq and isospin

density nI:

nq � �@��;�

@�
¼
Z 1

�1
dp1

2�
f
ð�� Eþ

� Þ þ 
ð�� E�
� Þg;
(32)

1Note, the quantity m does not equal to the physical or
dynamical quark mass M. The last one is defined by the pole
position of the quark propagator. Alternatively, it can be found as
a gap, i.e., one of the coordinates of the global minimum point of
the thermodynamic potential (see also the remark in the para-
graph just after (23)).
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nI � �@��;�

2@�

¼ 1

2

Z 1

�1
dp1

2�

�
Eþ �

Eþ
�


ðEþ
� ��Þ � E� �

E�
�


ðE�
� ��Þ

�
:

(33)

IV. PHASE STRUCTURE OF THE MODEL

A. Particular case: � ¼ 0, �I ¼ 0

Introducing the notationm � �M0=�, one can get from
(30) the following expression for the TDP at � ¼ 0, �I ¼
0 (usually, this quantity is called effective potential):

�0ðM;�Þ ¼ M2 þ�2

2�

�
ln

�
M2 þ�2

M2
0

�
� 1

�
� �M0M

2�
:

(34)

The corresponding gap equations look like

2�@�0ðM;�Þ
@M

� 2M ln

�
M2 þ�2

M2
0

�
� �M0 ¼ 0; (35)

2�@�0ðM;�Þ
@�

� 2� ln

�
M2 þ �2

M2
0

�
¼ 0: (36)

The gap system (35) and (36) has several solutions, but the
global minimum point (GMP) of the TDP (34) corresponds
to the value � ¼ 0. Then, at � ¼ 0, the Eq. (35) vs M has
three solutions of different signs. Just the one with largest
absolute value corresponds to the GMP of the TDP. This
quantity (gap) is denoted by M and depicted in Fig. 1 as a
function of the variable �. Since the quark number density

nq and isospin density nI (32) and (33) are equal to zero in

this GMP, we conclude that at � ¼ 0 and �I ¼ 0 the
ground state of the model corresponds to the empty space,
i.e. to the vacuum. Hence, in this case the gap M is the
dynamical quark mass in the vacuum. Clearly, the gap M
coincides withM0 in the chiral limit, � ¼ 0. In addition, in
Fig. 1 the behavior of the �-meson mass M� vs � in the
case of � ¼ 0 and �I ¼ 0 is also presented (it is the
solution of the Eq. (57) from Sec. VA1). From the inves-
tigations of Sec. IVC it will become clear that M� coin-
cides with the critical value �Ic of the isotopical chemical
potential �I, at which the system passes from the vacuum
state to the pion condensed phase. Just this fact is reflected
in Fig. 1. Moreover, we have also depicted in this figure the
behavior of the critical value �c vs � of the chemical
potential �, at which the system passes from the vacuum
to the normal quark matter phase at � ¼ 0 (see Sec. IVB).
It is easily seen from Fig. 1 that the relation between the

gapM in the vacuum and the pion massM� (at � ¼ 0 and
�I ¼ 0) has a strong �-dependency and for some values of
this parameter does not describe real physics. Recall, in
real (3þ 1)-dimensional physical models the dynamical
quark mass M is usually greater than M� at � ¼ 0 and
�I ¼ 0 and depends on the model parameters (coupling
constants, cutoff parameter, etc.). In particular, the values
M ¼ 350 MeV and M� ¼ 140 MeV, i.e., M=M� ¼ 5=2,
are often used in the NJL model investigations of dense
quark matter [30]. So, in the following consideration of the
phase structure of the model (1) and its meson mass
spectrum in the most general case of � � 0 and � � 0,
we will suppose the same relation between M and M� at
� ¼ 0 and �I ¼ 0. Evidently (see Fig. 1), this choice
corresponds to � ¼ �0 � 0:17. Having fixed the parame-
ter � ¼ �0 � 0:17, it is then possible to obtain M=M0 �
1:04, M�=M0 � 0:42, and m=M0 � 0:05, where M0 is the
dynamical quark mass in the massless GN model at � ¼ 0
and �I ¼ 0.

B. Particular case: � � 0, �I ¼ 0

Using again the notationm � �M0=�, one can get from
(30) the following expression for the TDP at � � 0, �I ¼
0:

��ðM;�Þ ¼ M2 þ �2

2�

�
ln

�
M2 þ �2

M2
0

�
� 1

�
� �M0M

2�

þ 
ð��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ �2

p
Þ

�

�
ðM2 þ �2Þ

� ln

�
�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 �M2 � �2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ�2

p
�

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �M2 � �2

q �
: (37)

It follows from the gap equations for the TDP (37) that
� ¼ 0 in its global minimum point, whereas the

FIG. 1. Dynamical quark massM (curve 1) and �-meson mass
M� (curve 2) vs � � �m=M0 at � ¼ 0, �I ¼ 0. Curve 3 is the
critical value �c of the vacuum–normal quark matter phase
transition (at �I ¼ 0); the critical value �Ic of the vacuum–
PC phase transition is also given by the curve 2, i.e., �Ic ¼ M�

(see Sec. IVC).
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M-coordinate of the GMP obeys the equation:


ð�2 �M2Þ lnð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �M2

p Þ2
M2

0

þ 
ðM2 ��2Þ lnM
2

M2
0

¼ �M0

2M
: (38)

Studying the GMP of the TDP (37) with the help of the
stationary Eq. (38), it is possible to show that at�<�c the
GMP is arranged in the point (M, � ¼ 0), where both the
critical value �c and the gap M are depicted in Fig. 1. In
this case the system is arranged in the vacuum state with
nq ¼ 0 and nI ¼ 0. However, if �>�c then the phase

which is usually called the normal quark matter phase is
realized in the model. In this phase the quark number
density nq is nonzero, however the isospin density nI ¼
0 at�I ¼ 0. In the particular case with � ¼ �0 � 0:17 the
behavior of the M-coordinate (gap) of the GMP is pre-
sented in Fig. 2, where �c � 0:76M0, as a function of �.

C. Particular case: � ¼ 0, �I � 0

In this case the TDP (30) has the following form:

��ðM;�Þ ¼ V0ðM;�Þ � �M0M

2�
�
Z 1

�1
dp1

2�

� fEþ
� þ E�

� � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þM2 þ �2

q
g: (39)

The corresponding system of the gap equations looks like:

2�@��ðM;�Þ
@M

� 2M ln

�
M2 þ�2

M2
0

�
� �M0 � 2M

Z 1

0
dp1

�
�
Eþ

EEþ
�

þ E�

EE�
�

� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þM2 þ �2

q �

¼ 0; (40)

2�@��ðM;�Þ
@�

� 2�

�
ln

�
M2 þ �2

M2
0

�
�
Z 1

0
dp1

�
�
1

Eþ
�

þ 1

E�
�

� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þM2 þ�2

q ��

¼ 0; (41)

where we have used the notations adopted after formula
(19). The coordinates (gap values) M � Mð�Þ and � �
�ð�Þ of the global minimum point of the TDP (39) obey the
gap Eqs. (40) and (41). (In the present section we find it
convenient to stress explicitly the fact that the GMP is
indeed a function of the parameter �.)
Recall the situation in (3þ 1)-dimensional NJL models

with pion condensation, if the bare (current) quark mass is
nonzero [13]. In this case at some critical value �Ic of the
isospin chemical potential, which is just the pion meson
mass M� in the vacuum at � ¼ 0 and �I ¼ 0, i.e., �Ic ¼
M�, there is a continuous second-order phase transition
from the vacuum phase (which is realized at � < �c ¼
M�=2) withMð�Þ � Mð0Þ � 0, �ð�Þ ¼ 0 to the pion con-
densed one (at � > �c), where Mð�Þ � 0, �ð�Þ � 0. This
means that the TDP global minimum point ðMð�Þ;�ð�ÞÞ,
corresponding to the pion condensed phase, has the follow-
ing property: Mð�Þ ! Mð�cÞ � Mð0Þ, �ð�Þ ! 0, if � !
�cþ. Here we again use the notations � ¼ �I=2 as well as
Mð0Þ for the dynamical quark mass in the vacuum.
It turns out that the same qualitative picture of the pion

condensed phase transition occurs in the framework of the
massive GNmodel. Indeed, numerical investigations of the
TDP (39) show that at some critical point �c there is a
second-order phase transition from the vacuum phase to
the phase with charged pion condensation. It means that the
GMP of the TDP (39) is a continuous function vs � in the
critical point � ¼ �c. Now, in order to define �c and to
prove that the equality �c ¼ M�=2 is also valid in the case
of the massive GN model, it is necessary to remark that at
� > �c the coordinates ðMð�Þ;�ð�ÞÞ of the GMP of the
TDP (39) convert the expression in the square brackets of
(41) into zero. Moreover, the Eq. (40) is also fulfilled.
Since at � ¼ �c we have a continuous phase transition,
i.e., �ð�cÞ ¼ 0, Mð�cÞ � Mð0Þ,2 in the critical point � ¼
�c this pair of equations is transformed into the following
one

�M0 ¼ 2Mð0Þ lnM
2ð0Þ
M2

0

; (42)

ln
M2ð0Þ
M2

0

¼ 2�2
c

Z 1

0
dp1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þM2ð0Þ

q
ðp2

1 þM2ð0Þ � �2
cÞ
:

(43)

FIG. 2. Dynamical quark mass M vs � at �I ¼ 0 and � ¼
�0 � 0:17. Here �c=M0 � 0:76.

2The quantity Mð0Þ vs � is nothing else than the gap M
depicted in Fig. 1 as curve 1.
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Next, by inserting Eq. (43) into the right-hand side of (42),
we find the useful relation

�M0

2Mð0Þ ¼ 2�2
c

Z 1

0
dp1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þM2ð0Þ

q
ðp2

1 þM2ð0Þ � �2
cÞ
:

(44)

In the next sections we will study the meson masses in
different phases of the model. In particular, we shall there
derive an equation for the �-meson mass M� in the vac-
uum at� ¼ 0 and�I ¼ 0 (see (57)). Comparing (44) with
this equation, it follows that �c ¼ M�=2, i.e., the critical
value �Ic is equal to the �-meson mass M� at � ¼ 0 and
�I ¼ 0 for arbitrary values of �. (Of course, one should
take into account that the corresponding dynamical quark
mass M appearing in this equation is nothing else than the
parameter Mð0Þ of the present section.) As a result, the
dependence of �Ic and M� vs � is presented by the same
curve 2 of Fig. 1.

Clearly, at � < �c we have a phase which corresponds to
the empty space (here both nq and nI are equal to zero).

Because of this property, we use the notation vacuum for
this phase.3 In the vacuum phase one has � ¼ 0, but the
gapM is nonzero and does not depend on � (its behavior vs
� is shown in Fig. 1). At � > �c the pion condensation
(PC) phase with nq ¼ 0 and nI � 0 is realized in the

model. Inside this phase both gaps M and � are nonzero

and depend on �. The isospin UI3ð1Þ symmetry is sponta-

neously broken in the PC phase. For the particular parame-
ter value � ¼ �0 � 0:17 the behavior of gaps vs � is
shown in Fig. 3, where �c � 0:21M0. In Fig. 4 the isospin
density nI vs � is presented.

D. General case: � � 0, �I � 0

In this case, starting from the TDP (30) we obtain the
following gap equations:

2�@��;�ðM;�Þ
@M

� 2M ln

�
M2þ�2

M2
0

�
��M0� 2M

Z 1

0
dp1

�
�
Eþ

EEþ
�

þ E�

EE�
�

� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2þ�2

p

�Eþ
ð��Eþ
� Þ

EEþ
�

�E�
ð��E�
� Þ

EE�
�

�
¼ 0;

(45)

2�@��;�ðM;�Þ
@�

� 2�

�
ln

�
M2 þ �2

M2
0

�
�
Z 1

0
dp1

�
�
1

Eþ
�

þ 1

E�
�

� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ �2

p

� 
ð�� Eþ
� Þ

Eþ
�

� 
ð�� E�
� Þ

E�
�

��
¼ 0:

(46)

Based on these equations, we have studied the properties of
the GMP of the TDP (30) in the particular case of � ¼
�0 � 0:17 and found the phase portrait, presented in Fig. 5.
There the vacuum, pion condensation as well as three
normal quark matter phases I, II, and III are arranged. In
the pion condensation phase the gaps� andM are nonzero,

FIG. 3. The gaps � (curve 1) and M (curve 2) vs � � �I=2 in
the case � ¼ 0 and � ¼ �0 � 0:17.

FIG. 4. Isospin density nI vs � at� ¼ 0 and � ¼ �0 � 0:17 in
the vacuum (at � < �c � 0:21M0), where nI � 0, and in the PC
phase (at � > �c), where nI � 0.

3By definition, the vacuum is here the phase with zero den-
sities nq and nI . However, one should realize that in a most
general case the (dynamical) properties of its ground state
depend on the values of � and �I. Indeed, in the model under
consideration at �I ¼ 0 there is an SUIð2Þ symmetry of the
ground state in the vacuum phase. As a result, all three pions
have a common mass. However, at�I � 0, i.e., when the ground
state symmetry is reduced to the UI3 ð1Þ subgroup, �-mesons
have different masses in this phase (see Sec. VB2).
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so here the isospin UI3ð1Þ symmetry is broken spontane-

ously. Throughout this phase the gaps � and M do not
depend on �. It turns out that their dependencies on � in
the PC phase at � � 0 are the same as in the PC phase at
� ¼ 0 (see Fig. 3). For points ð�;�Þ, taken from the other
phases of Fig. 5, the �-coordinate of the global minimum
point of the TDP is zero (as a result, in these phases the
isospin UI3ð1Þ symmetry remains intact), but the

M-coordinate of GMP is not zero. Namely, inside the
vacuum phase the gap M does not depend on ð�;�Þ, i.e.,
it is a constant. (In particular, here M � 1:04M0 at � ¼
�0 � 0:17.) Our analysis shows that on the boundary
between the vacuum and pion condensation phases the
gaps are continuous functions vs � and �. Hence, we
conclude that a transition from the vacuum to the pion
condensed phase or conversely is a second-order one.

It turns out that the gap M is a continuous
ð�; �Þ-function inside each of the domains I, II, and III
of Fig. 5. In contrast, it is changed by a jump when each
boundary between the I, II, and III phases is crossed. To
become convinced of this, look at Fig. 6, where the behav-
ior ofM vs � at two different fixed values of� is presented
(there, phase II is shrunk to the interval ða1; b1Þ at � ¼
0:84M0 and to the interval ða2; b2Þ at � ¼ 0:94M0). As a
result, we conclude that on these boundaries there is a first-
order phase transition.

Now, let us consider the quark number density nq (32) as

well as the isospin density nI (33) inside each phase of the
model. It is easy to see that for the vacuum phase these
quantities are zero, thus justifying the name of these
phases. Then, since the gaps � and M do not depend on
� inside the pion condensed phase and the relations E�

� >

� are true here, one can conclude that nq � 0 in this phase

and the isospin density nI vs � in the PC phase is presented
in Fig. 4. For the normal quark matter phases I, II, and III
we have� ¼ 0, so in order to obtain the expressions for nq
and nI in these phases one can use the expression (13) of
the paper [31] for the quantity ��;�ðM;� ¼ 0Þ. As a

result, in phases I, II, and III we have

nq ¼ 
ð�þ ��MÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ �Þ2 �M2

q

þ 
ðj�� �j �MÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� �Þ2 �M2

q
signð�� �Þ;

(47)

nI ¼ 
ð�þ ��MÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ �Þ2 �M2

q

� 
ðj�� �j �MÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� �Þ2 �M2

q
signð�� �Þ:

(48)

Then, using the values of the gapM presented in Fig. 6, one
can find the corresponding values of densities nq and nI
shown in the curves of Fig. 7. It is clear from this figure that
inside the II-phase nq � nI. Since nq ¼ nu þ nd and

2nI ¼ nu � nd, where nu, nd are the densities of up and
down quarks, correspondingly, it is clear from the above-
mentioned constraint that in phase II the relation nu �
�3nd is valid.
Up to now we have studied thermodynamic properties of

the model phases. Now the consideration of their dynami-
cal peculiarities is in order. The first point we would like to
discuss here is the spectrum of quasiparticles. In condensed
matter physics they are simply the one-fermion excitations
of the corresponding ground state. Recall, in the most
general case the energy spectrum of u-, d-, �u-,

FIG. 5. Phase portrait of the model in terms of � and � �
�I=2 at � ¼ �0 � 0:17. Here �c=M0 � 0:21, �c=M0 � 0:76.
All lines of the figure are curves of first-order phase transitions,
except the boundary between the vacuum and PC phase. In the
normal quark matter phases I, II, and III pion condensation is
absent (their properties are discussed in the text).

FIG. 6. The behavior of the gap M vs � in phases I, II, and III
at �=M0 ¼ 0:84 (curve 1) and �=M0 ¼ 0:94 (curve 2) at � ¼
�0 � 0:17. Here a1 � 0:47, a2 � 0:62, b1 � 1:11, b2 � 1:19.
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�d-quasiparticles (quarks) are given in (B6) (see
Appendix B). It is clear from this formula that in the
vacuum phase, where � ¼ 0 andM � 1:04M0, the energy
which is needed for a creation of the u- and
d-quasiparticles is always greater than zero. Hence, both
u- and d-quarks are the gapped excitations of the vacuum
phase. The similar property of a ground state is valid for the
PC phase of the model, where also a finite amount of
energy is needed to create up and/or down quarks.
Because of this reason, the name gapped phases are usually
used in these cases.

However, in the case with normal quark matter phases I,
II, and III the situation is opposite. Indeed, it is easy to
check that in phase I both u- and d-quasiparticles are
gapless. It means that there are no energy costs to create
these quarks, i.e., there exist space momenta p?

1 and p??
1

such that p0uðp?
1 Þ ¼ 0 and p0dðp??

1 Þ ¼ 0, where p0uðp1Þ
and p0dðp1Þ are the energies given in (B6) of correspond-
ing quasiparticles. (For example, the point (� ¼ 0:2M0,
� ¼ 0:84M0) lies in phase I with M � 0:088M0, � ¼ 0.
Then it is easy to find from (B6) that p?

1 � 1:04M0 and

p??
1 � 0:63M0.) In contrast, in phases II and III only

u-quasiparticles are gapless, but d-quarks are gapped.
Note, some dynamical effects in dense matter such as
transport phenomena (e.g., conductivities etc.) depend es-
sentially on the fact whether or not gapless excitations of
the medium are possible. Hence, these effects can occur in
a qualitatively different way in phase I on one hand, and in
phases II and III, on the other hand.

Finally, it is necessary to remark that the spectrum of
mesonic excitations also has a sharp phase dependence. In
particular, in Fig. 8 the behavior of the �0-meson mass in
phase II is depicted at two different values of�. It turns out
that in this phase the �0-meson is a stable particle (at least
with respect to strong interactions). However, in the neigh-
boring phases I and III it is no longer a stable particle but a
resonance. This fact as well as other peculiarities of the

meson spectrum in different phases of the model is the
subject of our consideration in the next section.

V. MESON MASSES IN DIFFERENT PHASES

As was noted in Sec. II (see the text after (15)), the
effective action (15) can be used for obtaining meson
masses in different phases of the model. For this purpose,
one should find from the outset all two-point 1PI Green
functions (16) of meson fields. These 1PI Green functions
are the matrix elements of the 4� 4 meson matrix �ðx�
yÞ. Then it is necessary to get the Fourier transformation
��ðpÞ of the meson matrix �ðx� yÞ and find its determinant
in the rest frame, where the two-component energy-
momentum vector p has the form p ¼ ðp0; 0Þ. The equa-
tion

det ��ðp0Þ ¼ 0 (49)

has in the plane of the variable p2
0 four (real- or complex-

valued) solutions, one of them is the mass squared of the
scalar �-meson, whereas the other three solutions give the
mass squared of the pseudoscalar �-mesons.

Detailed investigations of the meson matrix ��ðp0Þ show
that its matrix elements of the form ���3Xðp0Þ or ��X�3

ðp0Þ,
where X ¼ �, �1, �2, are equal to zero in all phases of the

model, i.e., the matrix ��ðp0Þ is a reducible one. This means
that the neutral pseudoscalar meson, �0 � �3, does not

mix with the other mesons,�� � ð�1 � i�2Þ=
ffiffiffi
2

p
or �. As

a result, one root of the Eq. (49) can be found through the

equation ���3�3
ðp0Þ ¼ 0, which supplies us with the mass

squared of the �0-meson in different phases of the model.
The other three meson masses are the zeros of the deter-
minant of the reduced meson matrix, whose matrix ele-
ments are two-point 1PI Green functions of the fields �,
�1, and �2.

FIG. 7. Quark number density nq (curve 1) and isospin density
nI (curve 2) vs � at �=M0 ¼ 0:84. Here a1 � 0:47, b1 � 1:11.

FIG. 8. The behavior of the �0-meson mass M�0 vs � in phase
II at �=M0 ¼ 0:84 (curve 1) and �=M0 ¼ 0:94 (curve 2). The
values ai and bj are given in Fig. 6.
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A. The mass of �0-meson

The corresponding two-point 1PI Green function looks
like:

��0�0ðzÞ � � �2Sð2Þ
eff

��3ðyÞ��3ðxÞ
¼ �ðzÞ

2G
þ iTrsfS11ðzÞ�5S11ð�zÞ�5

þ S22ðzÞ�5S22ð�zÞ�5 � S12ðzÞ�5S21ð�zÞ�5

� S21ðzÞ�5S12ð�zÞ�5g; (50)

where z ¼ x� y, and the matrix elements SijðzÞ of the

quark propagator are presented in (B5). Note, the expres-
sion (50) is valid for all phases of the model. Now, let us
consider it in each phase.

1. Vacuum and normal quark matter phase I: The case
� ¼ 0, � � 0

To illustrate the technique, which was elaborated in
details in the framework of NJL models with the color
superconductivity phenomenon [30], we start from the
most simple case of � ¼ 0 corresponding to the vacuum
and phase I only (see Sec. IVB and Fig. 5). Since for these
phases � ¼ 0, the last two terms in (50), proportional to
S12ðzÞ, vanish. The corresponding Fourier transformation
of the expression (50) now looks like:

���0�0ðpÞ ¼ 1

2G
þ iTrs

Z d2k

ð2�Þ2 f
�S11ðpþ kÞ�5 �S11ðkÞ�5

þ �S22ðpþ kÞ�5 �S22ðkÞ�5g; (51)

where the Fourier transformations �SijðpÞ can be easily

determined from (B5). Using in (51) the rest frame system,
where p ¼ ðp0; 0Þ, and calculating the trace over spinor
indices, we have

�� �0�0ðp0Þ ¼ 1

2G
þ 4i

Z d2k

ð2�Þ2

� E2 � ðk0 þ�Þðp0 þ k0 þ�Þ
ððk0 þ�Þ2 � E2Þ½ðk0 þ p0 þ�Þ2 � E2� ;

(52)

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þM2

q
, and the dynamical quark massM is

given by the value of the M-coordinate of the GMP of the
thermodynamic potential. As was noted in Appendix B, in
(52) k0 and (k0 þ p0) are correspondingly the shorthand
notations for k0 þ i" � signðk0Þ and ðk0 þ p0Þ þ i" �
signðk0 þ p0Þ, where " ! 0þ. The k0-integration in (52)
is performed along the real axis in the complex k0-plane.
We will close this contour by an infinite arc in the upper
half of the complex k0-plane. Taking into account the
above-mentioned rule for the k0-integration, we have in-
side the obtained closed contour of the integral in (52) four
poles of the integrand which are located in the following

points:

ðk0Þ1 ¼ �E��þ i"
ð�þ EÞ;
ðk0Þ2 ¼ E��þ i"
ð�� EÞ;
ðk0Þ3 ¼ �E��� p0 þ i"
ð�þ EÞ;
ðk0Þ4 ¼ E��� p0 þ i"
ð�� EÞ:

(53)

Since � � 0 and E � 0, the sum of the corresponding
residues of the integrand function in these poles results in
the following k1-integration in (52):

�� �0�0ðp0Þ ¼ 1

2G
þ 8

Z 1

�1
dk1
2�

E
ðE��Þ
p2
0 � 4E2

: (54)

To renormalize the expression (54) we use the gap Eq. (22)
at � ¼ � ¼ 0:

1

2G
¼ m

2M
þ 2

Z 1

�1
dk1
2�


ðE��Þ
E

; (55)

where we took into account that m0=G � m. Substituting
(55) into (54) and using the relationm � �M0=�, we have

�� �0�0ðp0Þ ¼ �M0

2�M
� 2p2

0

Z 1

0

dk1
�


ðE��Þ
Eð4E2 � p2

0Þ
: (56)

Note that the quantity ���0�0ðp0Þ is a multivalued function
of the variable p2

0 which is analytic on some complex

Riemann manifold described by several sheets. The ex-

pression in the right-hand side of (56) defines ���0�0ðp0Þ
just on the first physical sheet only, which is the whole
complex p2

0-plane, except for the cut p2
0 > 4M2 along the

real axis.
Recall that the mass squared M2

�0 of �0-mesons is the

zero of this 1PI Green function vs p2
0. The zero should lie

either on the real axis in the first sheet of the p2
0-plane (in

this case it corresponds to a stable particle with real value
of M2

�0 such that 0 	 M2
�0 	 4M2) or in the second sheet,

corresponding to a resonance. Since at � ¼ 0 a mass split-
ting between �-mesons is absent (see also the remark in
footnote 3), throughout the section we use the notationM�

both for the �0- as well as for the ��-meson mass.
It is clear from Fig. 1 (see also Sec. IVB) that in the

vacuum phase at � ¼ 0 the relation �<�c <M is valid
for arbitrary �-values, so the theta-function in (56) is equal
to unity. As a result, we see that in the vacuum the�-meson
mass satisfies the following equation:

�M0

2M
¼ 2M2

�

Z 1

0

dk1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þM2

q
ð4k21 þ 4M2 �M2

�Þ
: (57)

Supposing that the quantity M in (57) is just the gap
depicted in Fig. 1 as the curve 1, one can solve numerically
this equation with respect to the variable M�. It turns out
that the solution M� lies in the first sheet of the Riemann
manifold and hence obeys the relation M2

� < 4M2. The
quantity M� vs � is shown in Fig. 1 as the curve 2.
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In contrast, in the case of the phase I at � ¼ 0 the
corresponding 1PI Green function (56) does not have zeros
in the first Riemann sheet of the variable p2

0, i.e., there are

no stable (at least with respect to strong interactions)
�-mesonic excitations of the phase I ground state. In this
phase all �-mesons are resonances.

2. Vacuum and normal quark matter phases I, II and III:
The case � � 0, � � 0

Technically this is a more complicated case, but the
main ideas of calculations do not change. So, omitting
technical details, one can obtain the following expression

for the two-point 1PI Green function of �0-mesons in the
rest frame:

���0�0ðp0Þ ¼ �M0

2�M
� p2

0

Z 1

0

dk1
�

1

Eð4E2 � p2
0Þ

� ½
ðEþ ���Þ
þ signðE� �Þ
ðjE� �j ��Þ�: (58)

It is also a multivalued function of the variable p2
0 which is

analytical on the same Riemann manifold, where the Green
function (56) is defined. On the first Riemann sheet and at
real values of p2

0 such that 0 	 p2
0 < 4M2 it looks like:

���0�0ðp0Þ ¼ �M0

2�M
� 2p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M2 � p2
0

q arctan
p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M2 � p2
0

q þ p0
ð�þ ��MÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 � p2

0

q arctan
p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�þ �Þ2 �M2
p

ð�þ �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 � p2

0

q

þ p0
ðj�� �j �MÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 � p2

0

q arctan
p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�� �Þ2 �M2
p

j�� �j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 � p2

0

q : (59)

Let us, for example, again consider the case � ¼ �0 �
0:17, thenM � 1:04M0 (see Fig. 2). In this case, for the �
and � values taken from the vacuum phase of Fig. 5, each
theta-function in the expression (58) is equal to unity. As a
result, the Green function (58) at � � 0 coincides with the
�0 Green function (56) at � ¼ 0. Hence, in the vacuum
phase the mass of the �0-meson does not depend on both �
and�. It takes the valueM�0 � 0:42M0 in the case of � ¼
�0. In the general case of arbitrary �-values, theM�0-mass
in the vacuum phase at � � 0 is simply the pion mass at
� ¼ 0 (see the line 2 of Fig. 1).

One can easily check that the expression (59) turns into
zero at some point of the interval 0< p0 < 2M only in the
case when ð�;�Þ lies in phase II (the corresponding value
of p0 is the mass of the�0-meson). At some fixed values of
� the behavior of M�0 vs � is presented in Fig. 8 at � ¼
�0. In contrast, in phases I and III the expression (59) has
no zeros in the interval 0< p0 < 2M. Hence, in these
phases �0 is not a stable particle, but rather a resonance.

3. The pion condensation phase

Now, let us study the �0-mass in the PC phase, where
both gaps � and M are nonzero. To obtain a compact
expression for the two-point 1PI Green function
���0�0ðp0Þ, it is again necessary to eliminate in (50) the
coupling constant with the help of the gap Eq. (23), i.e., to
use the following relation

1

2G
¼
Z 1

�1
dk1
2�

�

ðEþ

� ��Þ
Eþ
�

þ 
ðE�
� ��Þ
E�
�

�
:

Then, after tedious but straightforward calculations which
are similar to that of Sec. VA1, it is possible to find

�� �0�0ðp0Þ ¼ ðp2
0 ��2

I Þ
Z 1

�1
dk1
2�

� Eþ
� þ E�

�

E�
�E

þ
� ½p2

0 � ðEþ
� þ E�

� Þ2�
: (60)

Clearly, the mass of �0 in the PC phase is equal to the
isotopic chemical potential �I and does not depend on �.

B. The masses of �- and ��-mesons

As was noted above, to get the masses of �- and
��-mesons, it is necessary to find the zeros (in the rest
frame with p ¼ ðp0; 0Þ) of the determinant of the reduced
meson matrix composed from two-point 1PI Green func-
tions of these particles. Our calculations show that the

Green functions are of the form ����1;2
ðp0Þ 
�. So, in

the vacuum as well as in phases I, II and III there is no
mixing between �- and �1;2-fields which leads to a further

reduction of the meson matrix. Hence, to find the mass of
the �-meson in these phases, it is sufficient to investigate

the separate equation ����ðp0Þ ¼ 0. The equation
det�ðp0Þ ¼ 0 with

�ðp0Þ �
���1�1

ðp0Þ; ���1�2
ðp0Þ

���2�1
ðp0Þ; ���2�2

ðp0Þ
 !

; (61)

then supplies us with the masses of ��-mesons.

1. �-meson in vacuum and I, II, III phases

In these phases � ¼ 0. So, on the basis of the effective
action (15) and using the relation (16) and the methods of
Sec. VA1, it is possible to obtain the most general ex-
pression for the two-point 1PI Green function of the
�-meson both in vacuum and in the I, II, III phases of
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the model

����ðp0Þ ¼ �M0

2�M
� ðp2

0 � 4M2Þ
Z 1

0

dk1
�

1

Eð4E2 � p2
0Þ

� ½
ðEþ ���Þ þ signðE� �Þ
� 
ðjE� �j ��Þ�; (62)

where again E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þM2

q
. Let us now suppose that the

pair of chemical potentials ð�; �Þ belongs to the vacuum
phase of Fig. 5, where, evidently, M>�þ �. In this
particular case the expression in the square brackets of
(62) is equal to 2, so

�� vac
��ðp0Þ ¼ �M0

2�M
� 2ðp2

0 � 4M2Þ
Z 1

0

dk1
�

1

Eð4E2 � p2
0Þ
:

(63)

It follows from (63) that in the chiral limit, when � ¼ 0
and M � 0, the �-meson is a stable particle with mass
equal to 2M. However, at arbitrary small �> 0 the zero of
the Green function (63), located at the point p2

0 ¼ 4M2 of

the first Riemann sheet at � ¼ 0, shifts to the second
Riemann sheet, signalling thus that in the vacuum phase
of the massive GN model the �-meson is a resonance. It is
quite reasonable that at small values of � the mass of this
resonance is near 2M.

Now remark that for values of � and � from the regions
I, II or III of Fig. 5 the square brackets of the integrand in
(62) cannot be negative. As a result, for all real values of p2

0

such that 0<p2
0 < 4M2 the Green function ����ðp0Þ is a

positive quantity, i.e. it cannot become zero. Thus, in
phases I, II and III of the model the �-meson is also a
resonance.4

2. ��-mesons in vacuum and I, II, III phases

The squared masses of ��-mesons in these phases are
given by the zeros of the equation det�ðp0Þ ¼ 0 in the
p2
0-plane, where�ðp0Þ is the matrix (61). To find its matrix

elements, it is convenient to use in the effective action (15)

the new fields ��ðxÞ ¼ ð�1ðxÞ � i�2ðxÞÞ=
ffiffiffi
2

p
instead of

the old ones, �1;2ðxÞ. Then, it is natural to define the

corresponding Green functions ��þ��ðx� yÞ etc., where

��þ��ðx� yÞ ¼ � �2Sð2Þ
eff

���ðyÞ��þðxÞ

etc.5 The Fourier transformations of these Green functions
are connected with the matrix elements of the matrix
�ðp0Þ (61) by the relations

�� �1�1
ðp0Þ ¼ ���2�2

ðp0Þ ¼ 1

2
½ ���þ��ðp0Þ þ �����þðp0Þ�;

���1�2
ðp0Þ ¼ � ���2�1

ðp0Þ ¼ i

2
½ ���þ��ðp0Þ � �����þðp0Þ�:

(64)

Then, the determinant of the matrix (61) looks like

det�ðp0Þ ¼ ���þ��ðp0Þ � �����þðp0Þ: (65)

Our straightforward analytical calculations show that

�� �þ��ðp0Þ ¼ ���0�0ðp0 þ�IÞ;
�����þðp0Þ ¼ ���0�0ð�I � p0Þ;

(66)

where ���0�0 is the 1PI Green function of the �0-meson,
presented in (58). Now suppose that at p2

0 ¼ M2
�0 the

Green function of the �0-meson turns into zero, when
the chemical potentials ð�;�IÞ are fixed at some values
in the vacuum phase or the I, II, III phases. Then, on the

basis of the relations (66) it is clear that ���þ��ðp0Þ 

ððp0 þ�IÞ2 �M2

�0Þ and �����þðp0Þ 
 ðð�I � p0Þ2 �
M2

�0Þ. As a result, we see that
det�ðp0Þ 
 ½ðp0 þ�IÞ2 �M2

�0� � ½ð�I � p0Þ2 �M2
�0�

� ½p2
0 � ðM�0 ��IÞ2� � ½p2

0 � ðM�0 þ�IÞ2�:
(67)

Hence, the zeros of the determinant (67), i.e., the quantities
M2

�þ ¼ ðM�0 ��IÞ2 and M2
�� ¼ ðM�0 þ�IÞ2, can be

identified with the mass squared of ��-mesons.

3. �- and ��-mesons in the pion condensation phase

As noted at the beginning of the present section, there
arises a mixing between � and �1;2 fields in the PC phase

of the massive GN model. Thus, to define the mesonic
mass spectrum one should find all the zeros of the deter-
minant of the meson matrix, composed of corresponding
two-point 1PI Green functions of the form (16). We have
found exact analytical expressions for these Green func-
tions and have shown that the determinant has a zero in the
point p2

0 ¼ 0. (In order not to overload the paper with

rather cumbersome formulas, we do not present here the
expressions for these Green functions.) It means that in the
PC phase there is a massless bosonic excitation. It can be
treated as a Goldstone boson, which is a consequence of
the spontaneous breaking of the isospin UI3ð1Þ symmetry

in the PC phase.
It turns out that further information about mesons in the

PC phase can be found in the chiral limit, i.e., at m0 ¼ 0.

4Strictly speaking, the found resonance character of � is here
associated to the existence of q �q-thresholds enabling the meson
decay into a (nonobservable) q �q-pair. Clearly, in order to model
e.g. the confinement properties of ‘‘more realistic’’ two-
dimensional QCD [32], one should consider a more sophisti-
cated GN model incorporating some suitable prescription for
quark confinement (see, e.g., [33]). Within such a model one
could then treat the �-decay into observable pions, � ! ��,
which is, however, outside the scope of this paper.

5In the phases with zero gap � the Green functions of the form
��þ�þðx� yÞ and �����ðx� yÞ vanish.
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Indeed, in this case the Green functions of the form
����1;2

ðp0Þ are identically equal to zero, so that the

�-meson does not mix with �1;2-fields. Moreover, it is

possible to show that in the massless GN model the Green

function ����ðp0Þ coincides in the PC phase with the Green

function ���0�0ðp0Þ (see (60)). Because of this relation we
conclude that M�¼M�0 ¼�I in the PC phase of the
massless GN model.

VI. SUMMARYAND CONCLUSIONS

Recent investigations of the phase diagram of isotopi-
cally asymmetric dense quark matter in terms of NJL
models show that their pion condensation content is not
yet fully understood. Indeed, the number of the charged
pion condensation phases of the phase diagram depends
strictly on the parameter set of the NJL model. It means
that for different values of the coupling constant, cutoff
parameter, bare quark mass, etc. just the same NJL model
predicts different numbers of pion condensation phases of
quark matter both with or without an electric neutrality
constraint (see, e.g., [12,14]). Thus, to obtain more objec-
tive information about the pion condensation phenomenon
of dense quark matter, it is important to invoke alternative
approaches. One of them, which qualitatively quite suc-
cessfully imitates some of the QCD properties (see also the
Introduction), is based on the consideration of this phe-
nomenon in the framework of asymptotically free (1þ 1)-
dimensional GN models in the leading order of the large
Nc-technique.

In the present paper we have studied the phase structure
of the massive GN model (1) in terms of quark number
(�)- as well as isospin (�I) chemical potentials in the limit
Nc ! 1 (for simplicity, the temperature has been taken to
be zero). After renormalization (see Sec. III), this model
contains two free parameters: M0, the dynamical quark
mass in the vacuum of the corresponding massless GN
model, and the renormalization-invariant quark mass m ¼
m0=G � �M0=� (see also the remark in footnote 1). In our
considerations we often put �¼�0�0:17 in order to have
the same relation between the dynamical quark mass M
and the �-meson mass M� in vacuum, i.e., M=M� ¼ 5=2,
as used in some other NJL model parametrizations [30].
Just at � ¼ �0 the phase portrait of the model is presented
in Fig. 5 in terms of � and � ¼ �I=2.

First, we have found that at T¼0 the charged pion
condensation phase of the GN model is realized inside
the (noncompact) chemical potential region �I>M�0 ,

where � is not greater thanM0=
ffiffiffi
2

p
andM�0 is the vacuum

mass of the �0-meson. In this phase the isospin UI3ð1Þ
symmetry is spontaneously broken down and a massless
Goldstone bosonic excitation of the ground state appears.
Moreover, we have shown that the mass of the�0-meson in
the PC phase is equal to the isospin chemical potential �I.
All one-quark excitations are found to be gapped particles

in this phase. As a result, the quark number density nq is

equal to zero in the PC phase.6 The same properties of the
PC phase are predicted in the framework of some NJL
model parametrizations (see, e.g., in [12,14]). In contrast,
in the NJL phase diagram the pion condensation phases
occupy a compact region and for some parametrization
schemes the gapless pion condensation might occur [11–
14].
Second, at rather large values of the quark number

chemical potential � we have found a rather rich variety
of normal quark matter phases I, II, and III (see Fig. 5), in
which the quark number density nq does not vanish (see

Fig. 7). In particular, it turns out that in phase I both u- and
d-quarks are gapless quasiparticles. On the contrary, in
phases II and III only u-quarks are gapless, whereas
d-quarks are gapped. By this reasoning, dynamical effects
in transport phenomena for dense quark matter (e.g., con-
ductivities, etc.) can occur in a qualitatively different way
in phases I, II, and III. We have studied also the �-meson
mass spectrum of these phases and found that in phase I
and III the �-mesons are resonances. However, phase II is
the so-called ‘‘stability island’’ for �-mesons. Indeed, as it
was shown by our numerical calculations, the �0-meson is
a stable excitation of the ground state of this phase. Its mass
vs � is depicted in Fig. 8. The ��-mesons are also stable in
this phase, but their masses are M�� ¼ jM�0 ��Ij (see
Sec. VB 2). (The same relation between �0- and
��-meson masses is also valid inside the vacuum phase
of Fig. 5.)
In conclusion, by using the rather simple approach

above to the GN phase diagram, we have found a variety
of phases with rather rich dynamical contents. A related
interesting issue could be the extension of these investiga-
tions to inhomogeneous condensates [28]. We hope that
our investigation of the phase diagram of the massive GN
model will shed some new light on the phase structure of
QCD at nonzero baryonic and isotopic densities.
Obviously, a more realistic imitation of the QCD phase
diagram requires us to include also a nonzero temperature
as well as a suitable confinement prescription for quark
propagators [33].
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6In the gapped phases, PC, or vacuum phases, the relations
E�
� >� are valid. Then, using (32), it is clear that nq � 0 in
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APPENDIX A. TRACES OF OPERATORS AND
THEIR PRODUCTS

Let Â; B̂; . . . be some operators in the Hilbert spaceH of
functions fðxÞ depending on two real variables, x �
ðx0; x1Þ. In the coordinate representation their matrix ele-
ments are Aðx; yÞ; Bðx; yÞ; . . . , correspondingly, so that

ðÂfÞðxÞ �
Z

d2yAðx; yÞfðyÞ;

ðÂ � B̂Þðx; yÞ �
Z

d2zAðx; zÞBðz; yÞ; etc:

By definition,

TrÂ �
Z

d2xAðx; xÞ;

TrðÂ � B̂Þ �
Z

d2xd2yAðx; yÞBðy; xÞ; etc: (A1)

Each function fðxÞ 2 H can be considered as an operator

f̂, acting in this space, with matrix elements fðxÞ�ðx� yÞ,
where �ðx� yÞ is the two-dimensional Dirac delta-
function. As a result, one can formally consider the trace
of functions, their products as well as the traces of more
complicated expressions, such as the products of operators
and functions. Indeed, using the definition (A1) we have

Trf � Trf̂ ¼ �ð0Þ
Z

d2xfðxÞ;
Trðf1f2Þ � Trðf̂1 � f̂2Þ ¼ R

d2xd2yf1ðxÞ�ðx� yÞf2ðyÞ�ðy� xÞ ¼ �ð0ÞR d2xf1ðxÞf2ðxÞ;
TrfÂfg � TrfÂ � f̂g ¼

Z
d2xd2yAðx; yÞfðyÞ�ðy� xÞ ¼

Z
d2xAðx; xÞfðxÞ;

TrfÂf1B̂f2g � TrfÂ � f̂1 � B̂ � f̂2g ¼
Z

d2xd2yd2vd2uAðx; vÞf1ðvÞ�ðv� yÞBðy; uÞf2ðuÞ�ðu� xÞ

¼
Z

d2ud2vAðu; vÞf1ðvÞBðv; uÞf2ðuÞ: (A2)

In particular, it follows from (A2) that

�TrfÂfg
�fðxÞ ¼ Aðx; xÞ; �2 TrfÂf1B̂f2g

�f1ðxÞ�f2ðyÞ ¼ Aðy; xÞBðx; yÞ:
(A3)

Now suppose that Aðx; yÞ � Aðx� yÞ, Bðx; yÞ � Bðx� yÞ,
i.e. that Â, B̂ are translationally invariant operators. Then
introducing the Fourier transformations of their matrix
elements, i.e.,

�AðpÞ ¼
Z

d2zAðzÞeipz;

AðzÞ ¼
Z d2p

ð2�Þ2
�AðpÞe�ipz; etc:;

(A4)

where z ¼ x� y, it is possible to obtain from the above
formulas

Tr Â ¼ Að0Þ
Z

d2x ¼
Z d2p

ð2�Þ2
�AðpÞ

Z
d2x: (A5)

If there is an operator function FðÂÞ, where Â is a transla-
tionally invariant operator, then in the coordinate represen-
tation its matrix elements depend on the difference (x� y).
Obviously, it is possible to define the Fourier transforma-
tions FðAÞðpÞ of its matrix elements, and the following
relations are valid ( �AðpÞ is the Fourier transformation for
the matrix element Aðx� yÞ):

FðAÞðpÞ ¼ Fð �AðpÞÞ;

TrFðÂÞ ¼
Z d2p

ð2�Þ2 Fð
�AðpÞÞ

Z
d2x:

(A6)

Finally, suppose that Â is an operator in some internal
n-dimensional vector space, in addition. Evidently, the
same is valid for the Fourier transformation �AðpÞ which
is now some n� n matrix. Let �iðpÞ be eigenvalues of the
n� n matrix �AðpÞ, where i ¼ 1; 2; . . . ; n. Then

TrFðÂÞ ¼
Z d2p

ð2�Þ2 trFð �AðpÞÞ
Z

d2x

¼ Xn
i¼1

Z d2p

ð2�Þ2 Fð�iðpÞÞ
Z

d2x: (A7)

In this formula we use the notation ‘‘tr’’ for the trace of any
operator in the internal n-dimensional vector space only,
whereas the symbol ‘‘Tr’’ means the trace of an operator
both in the coordinate and internal spaces.

APPENDIX B. QUARK PROPAGATOR

It is clear from (12) that the quark propagator S0 is the
following 2� 2 matrix in the two-dimensional flavor
space:

S0 � S11; S12
S21; S22

� �
¼ Dþ; D12

D21; D�

� ��1

; (B1)

where (the summation over � ¼ 0, 1 is implied)
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D� ¼ i��@� �Mþ ð�� �Þ�0;

D12 ¼ D21 ¼ �i�5�:
(B2)

The connection between Sij and Dij is the following:

S11 ¼ ½Dþ �D12D
�1� D21��1; S21 ¼ �D�1� D21S11;

S22 ¼ ½D� �D21D
�1þ D12��1; S12 ¼ �D�1þ D12S22:

(B3)

It is easy to establish the following relations:

D� ¼
Z d2p

ð2�Þ2 e
�ipðx�yÞfðp0 þ�� E�Þ�0�þ

þ ðp0 þ�þ E�Þ�0��g;

ðD�Þ�1 ¼
Z d2p

ð2�Þ2 e
�ipðx�yÞ

�
�

�þ�0

p0 þ�� E� þ ���0

p0 þ�þ E�

�
; (B4)

where E� ¼ E� �, E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þM2

q
, �� ¼ 1

2 �
ð1� �0ð�1p1þMÞ

E Þ, and �1 ¼ ��1.7 Using the relations

(B3), it is possible to obtain from (B2) and (B4):

S11 ¼
Z d2p

ð2�Þ2 e
�ipðx�yÞ

�
p0 þ�þ E�

ðp0 þ�Þ2 � ðE�
� Þ2

�0 ��� þ p0 þ�� Eþ

ðp0 þ�Þ2 � ðEþ
� Þ2

�0 ��þ
�
;

S22 ¼
Z d2p

ð2�Þ2 e
�ipðx�yÞ

�
p0 þ�þ Eþ

ðp0 þ�Þ2 � ðEþ
� Þ2

�0 ��� þ p0 þ�� E�

ðp0 þ�Þ2 � ðE�
� Þ2

�0 ��þ
�
;

S12 ¼ �i�
Z d2p

ð2�Þ2 e
�ipðx�yÞ

�
�5 ��þ

ðp0 þ�Þ2 � ðE�
� Þ2

þ �5 ���
ðp0 þ�Þ2 � ðEþ

� Þ2
�
;

S21 ¼ �i�
Z d2p

ð2�Þ2 e
�ipðx�yÞ

�
�5 ��þ

ðp0 þ�Þ2 � ðEþ
� Þ2

þ �5 ���
ðp0 þ�Þ2 � ðE�

� Þ2
�
;

(B5)

where ��� ¼ 1
2 ð1� �0ð�1p1�MÞ

E Þ and p0 in the integrand is a
shorthand notation for p0 þ i" � signðp0Þ, where " ! 0þ.
This prescription for the quantity p0 correctly implements
the role of the quantities � and �I as the chemical poten-
tials and preserves the causality of the theory [34]. It is
worth also to note the following useful relations:

�5 ����5 ¼ ��; �0 ����0 ¼ ��:

The poles of the matrix elements (B5) of the quark propa-
gator in the energy-momentum space give the dispersion
lows for quasiparticles, i.e., the momentum dependence of
the quark ðp0u; p0dÞ and antiquark ðp0 �u; p0 �dÞ energies, in a
medium

p0u ¼ E�
� ��; p0d ¼ Eþ

� ��;

p0 �u ¼ �ðEþ
� þ�Þ; p0 �d ¼ �ðE�

� þ�Þ: (B6)

Strictly speaking, the quantities p0u, p0d from (B6) are the
energies necessary for the creation of quarks with momen-
tum p1, whereas p0 �u, p0 �d is the energy necessary for the
annihilation of antiquarks.
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