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The properties of the two-flavored Gross-Neveu model in the (1þ 1)-dimensional R1 � S1 spacetime

with compactified space coordinate are investigated in the presence of the isospin chemical potential �I.

The consideration is performed in the limit Nc ! 1, i.e. in the case with infinite number of colored

quarks. It is shown that at L ¼ 1 (L is the length of the circumference S1) the pion condensation phase is

realized for arbitrary small nonzero �I. At finite values of L, the phase portraits of the model in terms of

parameters ���I and �� 1=L are obtained both for periodic and antiperiodic boundary conditions of

the quark field. It turns out that in the plane ð�; �Þ there is a strip 0 � � < �c which lies as a whole inside

the pion condensed phase. In this phase the pion condensation gap is an oscillating function vs both � (at

fixed �) and � (at fixed �).
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I. INTRODUCTION

It is well known that QCD is a fundamental theory of
strong interactions both in the vacuum and in hot and/or
dense baryonic matter. However, it can be successfully
used only in the region of high energies, temperatures,
and densities (or chemical potentials), where a weak-
coupling expansion is applicable. Away from this region,
different nonperturbative methods or effective theories
such as chiral effective Lagrangians as well as
Nambu–Jona-Lasinio type models (see, e.g., the papers
[1–4] and references therein), are usually employed for
the consideration of light meson physics, phase transitions
in dense quark matter, etc. In particular, motivated by the
fact that in heavy-ion collisions and compact stars the
hadronic matter is isotopically asymmetric, different
QCD-like effective models were studied at nonzero isospin
chemical potential �I [5–9]. There the charged pion con-
densation phenomenon, which is generated if �I is greater
than the pion mass m�, was also considered.

In all the above-mentioned papers the effective models
are (i) field theories in usual (3þ 1)-dimensional space-
time, and (ii) they are employed for the description of QCD
at rather low energies and densities. At the same time there
is another class of theories that can be used as a laboratory
for a qualitative consideration of QCD at arbitrary ener-
gies. These are the so-called Gross-Neveu (GN) type mod-
els, i.e. two-dimensional quantum field theories with four-
fermion interactions [10–12]. Renormalizability, asymp-
totic freedom, as well as the spontaneous breaking of chiral
symmetry (in the vacuum) are the most fundamental fea-
tures that are inherent both for QCD and all GN type
models. In addition, the GN phase portrait in terms of
baryon chemical potential �B vs temperature resembles
qualitatively to a great extent the QCD phase diagram [13–

17]. Because of their relative simplicity in the leading
order of a large-Nc expansion (Nc is a number of colored
quarks), it is very convenient to use GN models for con-
sidering such a phenomenon of dense QCD as color super-
conductivity [16,18] and to elaborate new nonperturbative
methods of quantum field theory [19–21]. Moreover, the
influence of the space compactification on chiral symmetry
breaking both in the vacuum (�B ¼ 0) [22] and in dense
baryon matter (�B � 0) [23] was studied in terms of GN
models (see also the appropriate papers [24–26]).
Before investigating different physical effects relevant

to a real (3þ 1)-dimensional world in the framework of
two-dimensional GNmodels, let us recall that there is a no-
go theorem forbidding the spontaneous breaking of con-
tinuous symmetries in two dimensions [27]. However, at
the present time it is well understood (see, e.g., the dis-
cussion in [11,15–17]) that in the limit Nc ! 1 this no-go
theorem does not apply. This makes it possible to study
symmetry breaking effects in terms of GN models as well,
but only in the leading order of the 1=Nc expansion, where
most low dimensional theories are exactly solvable. In this
sense, for Nc ! 1, low dimensional quark models are
physically more tractable and appealing than at finite Nc.
In the present paper the pion condensation phenomenon

is investigated in the framework of the two-dimensional
GN model with two massless quark flavors. In particular,
we shall study the influence of the finiteness of the system
size on this phenomenon. So our consideration is per-
formed in a spacetime with nontrivial topology, i.e. on
the R1 � S1 manifold with compactified space coordinate,
and the GN model is extended by an isospin chemical
potential �I (for simplicity, we put �B ¼ 0). Obviously,
the latter issue is motivated by the physics of compact
stars, where pion condensation might be realized as a
consequence of the isotopic asymmetry of baryon matter.

PHYSICAL REVIEW D 78, 045008 (2008)

1550-7998=2008=78(4)=045008(11) 045008-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.045008


Since all the calculations are carried out on the basis of the
leading order of 1=Nc expansion (i.e. in the case Nc ! 1)
we expect that all conclusions concerning the pion con-
densation phenomenon, caused by a spontaneous breaking
of the continuous isospin symmetry, remain qualitatively
valid for real QCD.

II. THE CASE OF R1 � R1 SPACETIME

A. The model and its thermodynamic potential

We consider a two-dimensional model which describes
dense quark matter with two massless quark flavors (u and
d quarks). Its Lagrangian has the form

L ¼ �q

�
��i@� þ�B

3
�0 þ�I

2
�3�

0

�
q

þ G

Nc
½ð �qqÞ2 þ ð �qi�5 ~�qÞ2�; (1)

where the quark field qðxÞ � qi�ðxÞ is a flavor doublet (i ¼
1, 2 or i ¼ u, d) and color Nc-plet (� ¼ 1; . . . ; Nc) as well
as a two-component Dirac spinor (the summation in (1)
over flavor, color, and spinor indices is implied); �k (k ¼ 1,
2, 3) are Pauli matrices; the baryon chemical potential �B

in (1) is responsible for the nonzero baryon density of
quark matter, whereas the isospin chemical potential �I

is switched on in order to study properties of quark matter
at nonzero isospin densities (in this case the densities of u
and d quarks are different). Evidently, the model (1) is a
generalization of the two-dimensional Gross-Neveu model
[10] with a single massless quark color Nc-plet to the case
of two quark flavors and additional chemical potentials. As
a result, we have in the case under consideration a more
complicated chiral symmetry group. Indeed, at �I ¼ 0
apart from the global color SUðNcÞ symmetry, the
Lagrangian (1) is invariant under transformations from
the chiral SULð2Þ � SURð2Þ group. However, at �I � 0
this symmetry is reduced toUI3Lð1Þ �UI3Rð1Þ, where I3 ¼
�3=2 is the third component of the isospin operator (here
and above the subscripts L, R mean that the corresponding
group acts only on the left, right-handed spinors, respec-
tively). Evidently, this symmetry can also be presented as
UI3ð1Þ �UAI3ð1Þ, whereUI3ð1Þ is the isospin subgroup and
UAI3ð1Þ is the axial isospin subgroup. Quarks are trans-

formed under these subgroups as q! expði��3Þq and q!
expði��5�3Þq, respectively.1

The linearized version of the Lagrangian (1), which
contains composite bosonic fields �ðxÞ and �aðxÞ (a ¼ 1,
2, 3), has the following form (in what follows, we use the
notation � � �B=3 for the quark chemical potential):

~L ¼ �q

�
��i@� þ��0 þ�I

2
�3�

0 � �� i�5�a�a

�
q

� Nc
4G

½��þ �a�a�: (2)

From the Lagrangian (2) one gets the equations for the
bosonic fields

�ðxÞ ¼ �2
G

Nc
ð �qqÞ; �aðxÞ ¼ �2

G

Nc
ð �qi�5�aqÞ: (3)

Obviously, the Lagrangian (2) is equivalent to the
Lagrangian (1) when using Eqs. (3). Furthermore, it is
clear from (3) and footnote 1 that the bosonic fields trans-
form under the isospin UI3ð1Þ and axial isospin UAI3ð1Þ
subgroups in the following manner:

UI3ð1Þ: �! �; �3 ! �3;

�1 ! cosð2�Þ�1 þ sinð2�Þ�2;

�2 ! cosð2�Þ�2 � sinð2�Þ�1;

UAI3ð1Þ: �1 ! �1; �2 ! �2;

�! cosð2�Þ�þ sinð2�Þ�3;

�3 ! cosð2�Þ�3 � sinð2�Þ�:

(4)

Starting from the theory (2), one obtains in the leading
order of the large-Nc expansion (i.e. in the one-fermion
loop approximation) the following path integral expression
for the effective action Seffð�;�aÞ of the bosonic �ðxÞ and
�aðxÞ fields:

expðiSeffð�;�aÞÞ ¼ N0 Z ½d �q�½dq� exp
�
i
Z

~Ld2x

�
;

where

S effð�;�aÞ ¼ �Nc
Z
d2x

�
�2 þ �2

a

4G

�
þ ~Seff ; (5)

N0 is a normalization constant. The quark contribution to

the effective action, i.e. the term ~Seff in (5), is given by

expði~SeffÞ ¼ N0 Z ½d �q�½dq� exp
�
i
Z
½ �qDq�d2x

�

¼ ½DetD�Nc : (6)

In (6) we have used the notation D � D� Ic, where Ic is
the unit operator in the Nc-dimensional color space and

D � ��i@� þ��0 þ�I

2
�3�

0 � �� i�5�a�a (7)

is the Dirac operator, which acts in the flavor, spinor, as
well as coordinate spaces only. Using the general formula
DetD ¼ expTr lnD, one obtains for the effective action the
following expression:

Seffð�;�aÞ¼�Nc
Z
d2x

�
�2þ�2

a

4G

�
� iNcTrsfx lnD; (8)

1Recall for the following that expði��3Þ ¼ cos�þ i�3 sin�,
expði��5�3Þ ¼ cos�þ i�5�3 sin�.
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where the Tr-operation stands for the trace in spinor (s), flavor (f), as well as two-dimensional coordinate (x) spaces,
respectively. Using (8), we obtain the thermodynamic potential (TDP) ��;�I

ð�;�aÞ of the system:

��;�I
ð�;�aÞ � �Seffð�;�aÞ

Nc
R
d2x

���������;�a¼const
¼ �2 þ �2

a

4G
þ i

Trsfx lnDR
d2x

¼ �2 þ �2
a

4G
þ i Trsf

Z d2p

ð2�Þ2 ln

�
p6 þ��0 þ�I

2
�3�

0 � �� i�5�a�a

�
; (9)

where the � and �a fields are now x-independent quantities, and in the round brackets of (9) just the momentum space
representation, �D, of the Dirac operator D appears. Evidently, Trsf ln �D ¼ P

i ln	i, where the summation over all four

eigenvalues 	i of the 4� 4 matrix �D is implied and

	1;2;3;4 ¼ ���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0 þ�Þ2 � p2

1 � �2
a þ ð�I=2Þ2 ��I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0 þ�Þ2 � �2

1 � �2
2

qr
: (10)

Hence,

��;�I
ð�;�aÞ ¼ �2 þ�2

a

4G
þ i

Z d2p

ð2�Þ2 lnð	1	2	3	4Þ

¼ �2 þ�2
a

4G
þ i

Z d2p

ð2�Þ2 lnf½ðp0 þ�Þ2 � "2þ�
� ½ðp0 þ�Þ2 � "2��g; (11)

where

"� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ �2 þ �2

3

q
��I

2

�
2 þ �2

1 þ �2
2

s
: (12)

The TDP��;�I
ð�;�aÞ is symmetric under the transforma-

tions�! �� and/or�I ! ��I. Hence, it is sufficient to
consider only the region � � 0, �I � 0. In this case, one
can integrate in (11) over p0 with the help of the formula

Z dp0

2�
ln½ðp0 þ aÞ2 � b2� ¼ i

2
fja� bj þ jaþ bjg (13)

(which is valid up to an infinite constant independent of
quantities a, b) and obtain

��;�I
ð�;�aÞ ¼ �2 þ �2

a

4G
�

Z 1

�1
dp1

4�
fj"þ ��j

þ j"þ þ�j þ j"� ��j þ j"� þ�jg

¼ �2 þ �2
a

4G
�

Z 1

�1
dp1

2�
f"þ þ "�

þ ð�� "þÞ
ð�� "þÞ
þ ð�� "�Þ
ð�� "�Þg: (14)

(To get the second line in (14) we used the relations j"� þ
�j ¼ "� þ� and 
ðxÞ þ 
ð�xÞ ¼ 1.) In what follows we
are going to investigate the�,�I-dependence of the global
minimum point of the function ��;�I

ð�;�aÞ vs �, �a. To
simplify the task, let us note that both the quasiparticle
energies (12) and hence the TDP (14) depend effectively
only on the two combinations �2 þ �2

3 and �
2
1 þ �2

2 of the
bosonic fields, which are invariants with respect to the
UI3ð1Þ �UAI3ð1Þ group, as is easily seen from (4). In this

case, without loss of generality, one can put �2 ¼ �3 ¼ 0
in (14), and study the TDP as a function of only two
variables, M � � and � � �1. Then the global minimum
point of the TDP ��;�I

ðM;�Þ,

��;�I
ðM;�Þ ¼ M2 þ �2

4G
�

Z 1

�1
dp1

2�
fEþ

� þ E�
�

þ ð�� Eþ
� Þ
ð�� Eþ

� Þ
þ ð�� E�

� Þ
ð�� E�
� Þg; (15)

is the solution of the system of gap equations

0 ¼ @��;�I
ðM;�Þ

@M

� M

2G
�M

Z 1

�1
dp1

2�E

�

ðEþ

� ��ÞEþ

Eþ
�

þ 
ðE�
� ��ÞE�

E�
�

�
;

0 ¼ @��;�I
ðM;�Þ

@�

� �

2G
��

Z 1

�1
dp1

2�

�

ðEþ

� ��Þ
Eþ
�

þ 
ðE�
� ��Þ
E�
�

�
; (16)

where E�
� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE�Þ2 þ�2

p
, E� ¼ E� �I

2 , and E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þM2

q
. Evidently, the coordinates M and � of the

global minimum point of the TDP (15) supply us with
two order parameters (gaps), which are proportional to
the ground state expectation values of the form h �qqi and
h �qi�5�1qi, respectively. If the gapM is nonzero, then in the
ground state of the model the axial isospin symmetry
UAI3ð1Þ (at �I � 0) is spontaneously broken down.
Moreover, if the gap � � 0, then in the ground state,
corresponding to the phase with charged pion condensa-
tion, the isospin UI3ð1Þ symmetry is spontaneously broken
down.

B. Pion condensation: the case of � ¼ 0, �I � 0

Since at �I ¼ 0, � � 0 the phase structure of different
GN models was reasonably well studied both in two di-
mensions [13,15–17] and in three dimensions [28] (in the
last case the four-fermion theories are also renormaliz-
able), in this subsection we shall study for simplicity the
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model (1) only at zero quark chemical potential, i.e. at� ¼
0, but �I � 0. The corresponding TDP will be denoted as
��I

ðM;�Þ and can be obtained from (15)

��I
ðM;�Þ ¼ M2 þ �2

4G
�

Z 1

�1
dp1

2�
fEþ

� þ E�
� g

� V0ð�Þ �
Z 1

�1
dp1

2�
fEþ

� þ E�
�

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ p2

1

q
g; (17)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ �2

p
and V0ð�Þ is the TDP of the system

in the vacuum, i.e. at �I ¼ 0. In the vacuum the TDP is
usually called effective potential:

V0ð�Þ ¼ �2

4G
� 2

Z 1

�1
dp1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ p2

1

q
: (18)

It is easily seen that both the TDP (17) and the effective
potential (18) are formally ultraviolet (UV) divergent
quantities. So, a few words are needed about the renormal-
ization procedure of the initial model. It is well known that
all four-fermion theories of the type (1) are renormalizable
in two-dimensional spacetime [10]. Moreover, in the lead-
ing order of the large-Nc expansion only the coupling
constant should be renormalized in order to obtain finite
(renormalized) expressions for different quantities (see,
e.g., [14]). It means that the bare coupling constant G of
the model (1) depends on the cutoff parameter �, G �
Gð�Þ, in such a way that all UV divergences, arising from
loop integrations when � ! 1, are compensated by cor-
responding terms of Gð�Þ. As a consequence, in the limit
� ! 1 one must necessarily obtain finite expressions for
physical quantities. Of course, different renormalization
procedures result in different expressions for the bare
coupling constant Gð�Þ. However, physical consequences
of the theory do not depend on the concrete renormaliza-
tion scheme. Taking this last remark into account, let us
next discuss how to obtain a finite renormalized expression
for the TDP (17). We see here two ways. On the one hand,
one could find an expression for the bare coupling constant
G such that the UV divergence, arising from the integral in
the first line of (17), would be compensated by the term
withG. Evidently, in this caseG depends both on the cutoff
� and�I. However, we find it more convenient to consider
the second way. In this case, one should first of all note that
the integral in the second line of (17) is a convergent
quantity, and the whole UV divergence is located in the
effective potential V0ð�Þ. Hence, there is a possibility to
remove UV divergences using a bare coupling constant
which does not depend on �I. Namely, let us choose

1

2G
¼ 2

�

Z �

0
dp1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ p2
1

q ¼ 2

�
ln

��þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ�2
q
M0

�
;

(19)

where M0 is the dynamical mass of quarks in the vacuum
(for more details, see the appendix). Then, substituting (19)
into (18) and restricting there the range of integration by
using the cutoff parameter �, it is possible to obtain for
� 	 M0 the expression (moreover, we omit an inessential
infinite constant independent of �):

V0ð�Þ ¼ �2

2�

�
ln

�
�2

M2
0

�
� 1

�
: (20)

SinceM0 might be considered as a free model parameter, it
follows from (19) and (20) that the renormalization proce-
dure of the GN model is accompanied by the dimensional
transmutation phenomenon. Indeed, in the initial unrenor-
malized expressions both for ��I

ðM;�Þ and V0ð�Þ [see
(17) and (18), respectively] the dimensionless coupling
constant G is present, whereas after renormalization the
effective potential (20) is characterized by a dimensional
free model parameter M0.
Because of the relation (20), one can show that the gap

equations for the renormalized TDP (17) might have no
more than three different solutions. Two of them, (M ¼ 0,
� ¼ 0) and (M ¼ 0, � ¼ M0), are present at arbitrary
values of �I � 0, whereas the third one, (M ¼ M0, � ¼
0), appears only at �I <M0

ffiffiffi
2

p
. However, for arbitrary

�I > 0 a global minimum point of the TDP ��I
ðM;�Þ

lies at the point (M ¼ 0, � ¼ M0). This means that in the
model (1) the isospin symmetry is always broken down and
a charged pion condensate which is equal to the quark mass
M0 in the vacuum, is created if �I > 0.
Since in the vacuum case (� ¼ 0, �I ¼ 0) chiral sym-

metry is spontaneously broken down in the model (1), there
must exist three massless Nambu-Goldstone bosons which
are pions, i.e. m� ¼ 0. So, we have proved that in the
framework of the model (1) the pion condensation phase
is realized at �I > m�, where m� is the pion mass in the
vacuum. Just the same phase structure is predicted by QCD
at � ¼ 0, �I � 0 [5]. In contrast, in the framework of
(3þ 1)-dimensional NJL-type models the pion condensa-
tion is not allowed for sufficiently high values of the
isospin chemical potential [6–8]. This fact supports the
statement made in the introduction that the NJL approach
is only valid at rather small energies (chemical potentials).
Moreover, we have once more demonstrated that in the
leading order of the large-Ncexpansion the two-
dimensional GN models are a quite good theoretical labo-
ratory for qualitative QCD investigations. So we are in a
position to believe that the results obtained in the next
sections are also inherent to QCD.

III. THECASEOFR1 � S1 SPACETIMEAND�I � 0

In the present section we continue the investigation of
the charged pion condensation, this time under the influ-
ence of the finite volume occupied by the system. This is
obviously a reasonable task, since all physical effects take
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place in restricted space regions. The consideration of the
problem is significantly simplified in the framework of the
two-dimensional model (1) at �I � 0, which is again
justified by its similarity to QCD. So we put a system
with Lagrangian (1) into a restricted space region of the
form 0 � x � L (here x is the space coordinate). It is well
known that in this case the consideration is equivalent to
the investigation of the model in a spacetime with non-
trivial topology R1 � S1 and with quantum fields, satisfy-
ing some boundary conditions of the form

qðt; xþ LÞ ¼ ei��qðt; xÞ; (21)

where 0 � �< 2, L is the length of the circumference S1,
and the variable x means the path along it. Below, we shall
use only two values of the parameter �: � ¼ 0 for periodic
boundary conditions and � ¼ 1 for the antiperiodic one.

As a consequence, to obtain the thermodynamic poten-
tial �L�I

ðM;�Þ of the initial system placed in the re-

stricted domain 0 � x � L and at �I � 0, one must
simply replace the integration in (17) by an infinite series,
using the rule:

Z 1

�1
dp1

2�
fðp1Þ ! 1

L

X1
n¼�1

fðp1nÞ;

p1n ¼ �

L
ð2nþ �Þ; n ¼ 0;�1;�2; . . .

(22)

Moreover, instead of V0ð�Þ it is necessary to use the
effective potential VLð�Þ of the model in the vacuum (see
the appendix). As a result, the TDP (17) will be replaced by
the corresponding expression for the spacetime of the form
R1 � S1, i.e.

�L�I
ðM;�Þ ¼ VLð�Þ � 1

L

X1
n¼�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ �2

L2
ð2nþ �Þ2

s
þ�I

2

�
2 þ �2

vuut þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ �2

L2
ð2nþ �Þ2

s
��I

2

�
2 þ�2

vuut

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

L2
ð2nþ �Þ2

s �
; (23)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ �2

p
, and the function VLð�Þ is defined

in (A10). In what follows, it will be convenient to use the
dimensionless quantities

� ¼ �

LM0

; � ¼ �I

2M0

; m ¼ M

M0

;

� ¼ �

M0

; O��ðm;�Þ ¼ �

M2
0

�L�I
ðM;�Þ;

(24)

where M0 is the dynamical quark mass in the vacuum.
Moreover, since the phase structure of the model in the two
particular cases L ¼ 1, �I � 0 and L � 1, �I ¼ 0 was
already considered in Sec. II B and in the appendix, we will
now investigate the phase structure only at � > 0, � > 0.

A. The case of periodic boundary conditions

In this case � ¼ 0, and in terms of the dimensionless
quantities (24) the TDP (23) can be rewritten in the follow-
ing explicit form:

O��ðm;�Þ ¼ ðm2 þ �2Þ½lnð4�Þ � ��
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ �Þ2 þ �2

q
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� �Þ2 þ �2

q

� 2�
X1
n¼1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð2n�Þ2

q
þ �Þ2 þ �2

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð2n�Þ2

q
� �Þ2 þ �2

r

� 4n��m2 þ �2

2n�

�
; (25)

where � ¼ 0:577 . . . is the Euler’s constant [29]. We con-

sider the TDP (25) as a function of two variables, m, �.
Moreover, �, � are free parameters there. Since the infor-
mation about the phase structure of the model in the case of
the periodic boundary conditions is contained in the global
minimum point of the function (25) vs m, �, it is first of all
necessary to study the gap equations and then to investigate
the behavior of the global minimum point vs parameters �,
�. In particular, it is possible to show that for each fixed
point of the plane ð�; �Þ (with � > 0 and � � 0) the global
minimum point of the TDP (25) might be located at two
different points only, (i) (m ¼ 0, � ¼ 0) and (ii) (m ¼ 0,
� � 0), where the nonzero gap � is the solution of the
equation @O��ð0; �Þ=@ð�2Þ ¼ 0. The point (i) corresponds
to the UI3ð1Þ �UAI3ð1Þ symmetric phase of the model

(without charged pion condensation). On the other hand,
if the global minimum of the function (25) is situated at the
point (ii), then in the ground state of the model the isospin
symmetry UI3ð1Þ is spontaneously broken down, and the

pion condensation takes place. Let us denote by lc the
critical curve which separates the region of the ð�; �Þ plane
with symmetric phase from the points ð�; �Þ, correspond-
ing to the pion condensed phase of the model. Since in each
point of the curve lc there is a phase transition of the second
order from the symmetric phase to the pion condensed one
and vice versa, the gap � must vanish on this curve. So the
critical curve lc is defined by the following equation:

lc:
@O��ðm;�Þ
@ð�2Þ

��������m;�¼0
� lnð4�Þ � �� �

�
� X1

n¼1

�
�

2n�þ �

þ �

j2n�� �j �
1

n

�
¼ 0: (26)
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To represent the curve lc in the plane ð�; �Þ, it is convenient
to divide this plane into an infinite set of regions !k:

ð�; �Þ ¼ [1
k¼1

!k;

!k ¼ fð�; �Þ: 2�ðk� 1Þ � � � 2�kg:
(27)

In accordance with the division (27), the critical curve lc
can also be presented as a set of pieces, lc ¼

S1
k¼1 lck.

Obviously, each piece lck of the whole critical curve lc lies
inside the corresponding kth region !k and obeys the
following equation (k > 1):

lck: lnð4�Þ � �� �

�
� Xk�1

n¼1

�
�

2n�þ �
þ �

�� 2n�
� 1

n

�

� X1
n¼k

�
�

2n�þ �
þ �

2n�� �
� 1

n

�
¼ 0: (28)

For k ¼ 1 the part lc1 obeys Eq. (26) with omitted absolute
value symbols. Performing the summations in (26) or (28),
one can find for each piece lck of the critical curve lc the
following equation (k � 1):

lck: 2 lnð4�Þ þ 2 

�
k� �

2�

�
�  

�
1� �

2�

�
þ  

�
�

2�

�
¼ 0;

(29)

which is valid only at 2�ðk� 1Þ � � � 2�k. Here  ðxÞ is
the logarithmic derivative of the Euler’s �ðxÞ function [29].
Before drawing the critical curve lc, we would like to point
out its peculiarity. Using the well-known property of the
 ðxÞ function, � cotð�xÞ ¼  ð1� xÞ �  ðxÞ, as well as
the periodicity of cotð�xÞ, Eq. (29) can be reduced to the
following one:

lck: 2 lnð4�Þ ¼ �2 ðzÞ � � cotð�zÞ � FðzÞ; (30)

where z ¼ k� �=ð2�Þ and 0 � z � 1. Since the absolute

minimum of the function FðzÞ from (30) corresponds to the
point z ¼ 1=2, each branch lck of the critical curve lies to
the right of the vertical line � ¼ �c [in the plane ð�; �Þ],
where 2 lnð4�cÞ ¼ Fð1=2Þ, i.e. �c ¼ e� 
 1:78. All the
branches of the critical curve lc as well as the phase portrait
of the initial model in terms of ð�; �Þ are presented in Fig. 1
(left picture). Clearly, there is a strip 0 � � < �c which
lies, as a whole, inside the region, corresponding to the
pion condensed phase.
In the right picture of Fig. 1 the behavior of the pion

condensation gap � vs � is depicted at � ¼ 7:5. It is easily
seen that this quantity oscillates as a function of �.
However, the amplitude of this oscillation is a rapidly
decreasing function of � when �! 0. Similar oscillations
of different physical quantities such as gaps, critical
curves, particle densities, etc. vs � were also observed in
some NJL-type models with one compactified space coor-
dinate, but in a qualitatively alternative case with nonzero
baryonic chemical potential [30]. Moreover, oscillating
phenomena as functions of curvature are inherent to NJL
models in the Einstein universe, i.e. in the curved space-
time of the form R1 � S3 [31]. In Fig. 2 the behavior of the
gap � vs � is depicted at � ¼ 1 (left picture) and � ¼ 1:7
(right picture). Concerning this type of oscillations of the
gap �, it is necessary to note first of all that its period is
equal to 2�. Moreover, it is clear from Fig. 2, and this fact
is supported by numerical calculations, that the amplitude
of the oscillations of the quantity � vs � is a very slowly
decreasing function of �. Finally, it is evident that the
smaller �, the smaller the amplitude of this � oscillations
of the gap �.

B. The case of antiperiodic boundary conditions

In this case � ¼ 1, so in (23) instead of VL one should
use the effective potential (A12). Then in terms of the
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FIG. 1. The periodic case: In the left picture the phase portrait of the model is represented in terms of ð�; �Þ, where number 1 denotes
the symmetric phase and number 2 denotes the pion condensed phase. In the right picture the behavior of the gap � vs � is depicted at
� ¼ 7:5.
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quantities (24) we have

O��ðm;�Þ ¼ ðm2 þ �2Þ½lnð�Þ � ��

� 2�
X1
n¼0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð2nþ 1Þ2�2

q
þ �Þ2 þ �2

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð2nþ 1Þ2�2

q
� �Þ2 þ �2

r

� 2ð2nþ 1Þ�� m2 þ �2

ð2nþ 1Þ�
�
: (31)

The critical curve lc which divides the parameter plane
ð�; �Þ into a region with symmetric phase and the region,
corresponding to a pion condensed phase, is now defined
by the following equation:

lc:
@O��ðm;�Þ
@ð�2Þ

��������m;�¼0
� lnð�Þ���X1

n¼0

�
�

ð2nþ1Þ�þ�

þ �

jð2nþ1Þ���j�
2

2nþ1

�
¼ 0:

(32)

As in the case with periodic boundary conditions, for
solving Eq. (32) it is convenient to represent the parameter
ð�; �Þ-plane as the union of !k regions, ð�; �Þ ¼ S1

k¼0!k,

where

!0 ¼ fð�; �Þ: 0 � � � �g;
!k ¼ fð�; �Þ: ð2k� 1Þ� � � � ð2kþ 1Þ�g for k � 1:

(33)

Accordingly, in this case the critical curve lc is composed
of different pieces, i.e. lc ¼ S1

k¼0 lck, where lck is the part
of lc, arranged in the corresponding region !k. Obviously,
the equation for lc0 is just Eq. (32) with omitted absolute
value symbols. However, the equations for lck (k � 1) look
like

lck: lnð�Þ � �� Xk�1

n¼1

�
�

ð2nþ 1Þ�þ �
þ �

�� ð2nþ 1Þ�

� 2

2nþ 1

�
� X1

n¼k

�
�

ð2nþ 1Þ�þ �

þ �

ð2nþ 1Þ�� �
� 2

ð2nþ 1Þ
�
¼ 0: (34)

Summing in (32) or (34) with the help of a program of
analytical calculations, it is possible to obtain the more
concise form of the equations for different pieces lck (k �
0) of the critical curve:

lck: 2 lnð4�Þ þ 2 

�
kþ 1

2
� �

2�

�
�  

�
1

2
� �

2�

�

þ  

�
1

2
þ �

2�

�
¼ 0: (35)

As in Sec. III A, Eq. (35) can be transformed to a formally
!k-independent expression

lck: 2 lnð4�Þ ¼ �2 ðzÞ � � cotð�zÞ; (36)

where z ¼ kþ 1
2 � �=ð2�Þ and 0 � z � 1

2 for k ¼ 0,

whereas 0 � z � 1 for k � 1. Note that Eq. (36) coincides
with (30) except for the different �, � dependence of the
variable z. In Fig. 3 (left picture) the first several branches
lck of the whole critical curve lc, which divides the ð�; �Þ
plane into a region with pion condensed phase (the number
2 in the figure) and a region corresponding to a symmetric
phase (the number 1 in the figure), are represented. Note
that the strip 0 � � � �c of the plane belongs to the region
2 with the pion condensation phase.
In the right picture of Fig. 3 as well as in Fig. 4 the

oscillating behavior of the pion condensation gap � vs �
and, correspondingly, vs � is depicted. The properties of
these oscillations are the same as in the periodic case.
Namely, at fixed � the gap � is a quickly damping oscillat-
ing function of �when �! 0, whereas at fixed � the gap �
oscillates at �! 1 with a very weak damping.

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8

δ

ν 0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10

δ

ν

FIG. 2. The periodic case: The behavior of the gap � vs � at � ¼ 1 (left picture) and � ¼ 1:7 (right picture).
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IV. SUMMARYAND DISCUSSION

In the present paper we have studied the phase structure
of a two-dimensional GN model at nonzero isospin chemi-
cal potential �I and in the spacetime R1 � S1 with non-
trivial topology, when the space coordinate is compactified
into a circumference of a finite length L. The consideration
is performed in the leading order of the large-Nc expansion
technique.2

It turns out that in the case with L ¼ 1 the pion con-
densed phase is realized in the model at arbitrary nonzero
values of �I. In this phase the corresponding order pa-
rameter, the pion condensate �, does not depend on the

isospin chemical potential�I and is equal toM0, i.e. to the

dynamical quark mass in the vacuum. The same phase

structure at �I � 0 occurs in the chirally symmetric
QCD, where pions are massless particles, so one more
common property is found which is shared both by the

GN model and QCD. As a result, the assurance that the
finite size (L � 1) effects of the GN model are also
inherent to compactified QCD at �I � 0 is raised.
If L is finite, then the phase portraits of the model in

terms of �� 1=L and ���I are found for the case of
periodic (see Fig. 1) and antiperiodic (see Fig. 3) boundary
conditions. Among the most interesting properties of these

phase diagrams is the fact that the strip 0 � � < �c 
 1:78
lies as a whole inside the pion condensed phase. We have
shown also that the pion condensed gap � is an oscillating
function vs both � (at fixed �) and � (at fixed �). The same
is true for other thermodynamic quantities of the model
such as pressure, particle densities, etc., and is inherent
also to the (3þ 1)-dimensional NJL models with curved
spacetimes [31] or spacetimes with nontrivial topology
[30].
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FIG. 3. The antiperiodic case: The phase portrait (left picture) and the gap � at � ¼ 7:5 (right picture). The notations are the same as
in Fig. 1.
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FIG. 4. The antiperiodic case: The behavior of the gap � vs � at � ¼ 1 (left picture) and � ¼ 1:7 (right picture).

2It should be noted that the problem of the IR-behavior of the
correlation function of quantum fluctuations in two-dimensional
quantum field theory (QFT) models was extensively discussed in
literature with relation to the Coleman-Mermin-Wagner theo-
rem. One may mention the papers on the 2-dimensional GN
model [11,15–17], where this problem has been investigated and
it was demonstrated that for the limit of infinite Nc this theorem
is not valid, and hence spontaneous symmetry breaking may take
place.
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One more interesting issue should also be mentioned.
Although in the present paper the spatially uniform pion
condensation was assumed for simplicity, however, for
sufficiently high values of �I, the pion superfluidity with
inhomogeneous condensate might be realized in isotopi-
cally asymmetric and spatially infinite quark matter sys-
tems [32]. A detailed investigation of this possibility in the
case of finite space volume is outside the scope of this
paper and should be left for further studies in the frame-
work of different QCD-like models including the GN
model.
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APPENDIX: EFFECTIVE POTENTIAL IN THE
VACUUM (�I ¼ 0)

Note that in the vacuum and in the R1 � R1 spacetime,
the expression V0 for the effective potential of the initial
model (1) can be found starting from the TDP (11) at � ¼
�I ¼ 0, where without loss of generality it is possible to
put �a ¼ 0 (a ¼ 1, 2, 3):

V0ð�Þ ¼ �2

4G
þ i

Z d2p

ð2�Þ2 ln½ðp2
0 � p2

1 � �2Þ2�

¼ �2

4G
� 2

Z 1

�1
dp1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ p2

1

q
: (A1)

Here the second equality is obtained with the help of
formula (13). Since in (A1) the last integral is an UV
divergent one, we regularize it by cutting off the integra-
tion region, i.e. supposing that jp1j<�. The effective
potential V0ð�Þ, as a whole, must be a finite quantity at
� ! 1. So the UV divergence of the integral term in (A1)
must be compensated by the term with the bare coupling
constant G, which, of course, has to be a �-dependent
quantity. To find an appropriate expression for G, let us
recall that in the vacuum the chiral symmetry is necessarily
broken down in the framework of the model (1), and quarks
acquire a nonzero dynamical massM0 which is a nontrivial
solution of the gap equation V0

0ð�Þ ¼ 0. Taking into ac-

count this circumstance, one can immediately obtain from
the gap equation the expression (19) for the bare coupling
G. Substituting it in (A1), it is possible to get for � 	 M0

the effective potential (20) of the initial model in the
vacuum and in the R1 � R1 spacetime. (More details about
the above renormalization procedure for V0ð�Þ are pre-
sented, e.g., in [21,23]).

Now let us find the effective potential VLð�Þ of the
model (1), when the spacetime has a nontrivial topology
of the form R1 � S1 and quark fields obey the most general
boundary conditions (21). In this case one can start from
Eq. (A1), in which it is necessary to perform the Euclidian
rotation (p0 ! ip0) and then use the transformations ac-
cording to the rule (22). As a result, we have

VLð�Þ ¼ �2

4G
� 2

L

X1
n¼�1

Z dp0

2�
ln

�
p2
0 þ �2

þ �2

L2
ð2nþ �Þ2

�
: (A2)

Let us next use in (A2) the formula lna ¼ �R1
0
ds
s e

�as,
which is valid up to an infinite constant independent of the
parameter a, as well as the Poisson sum formula [29]

X1
n¼�1

e�sð�2=L2Þð2nþ�Þ2 ¼ L

2�

ffiffiffiffi
�

s

r X1
n¼�1

e�ðn2L2=4sÞein��

¼ L

2�

ffiffiffiffi
�

s

r �
1þ 2

X1
n¼1

e�ðn2L2=4sÞ

� cosðn��Þ
�
: (A3)

After integration over p0, one can easily find

VLð�Þ ¼ V0ð�Þ þ 1

�

X1
n¼1

Z 1

0

ds

s2
e��2s�ðn2L2=4sÞ cosðn��Þ;

(A4)

where

V0ð�Þ ¼ �2

4G
þ 1

2�

Z 1

0

ds

s2
e��2s (A5)

is another, equivalent, expression for the effective potential
(A1). [It is clear from general considerations that at L! 1
the effective potential VLð�Þ must coincide with the effec-
tive potential in the R1 � R1 spacetime, i.e. with V0ð�Þ
given in (A1). Looking at the formula (A4) (or (A7) below)
at L! 1, one can easily obtain in the right-hand side the
expression appearing in the right-hand side of formula
(A5). So, due to the above reason, it is the function
V0ð�Þ.] Moreover, in the following we will use for V0ð�Þ
its renormalized expression (20). Let us integrate in (A4)
over s using the well-known relation [33]

Z 1

0
dssn�1e�ðA=sÞ�Bs ¼ 2

�
A

B

�
n=2
Knð2

ffiffiffiffiffiffiffi
AB

p Þ; (A6)

where KnðzÞ ¼ K�nðzÞ is the Macdonald function [29].
Then,
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VLð�Þ ¼ V0ð�Þ þ 4�

�

X1
n¼1

cosðn��Þ
nL

K1ðnL�Þ: (A7)

Because of the relation z d
dz K1ðzÞ ¼ �K1ðzÞ � zK0ðzÞ, it

follows from (A7) that

@

@�
VLð�Þ¼ @

@�
V0ð�Þ�4�

�

X1
n¼1

cosðn��ÞK0ðnL�Þ: (A8)

The series in (A8) can be modified appropriately [33], so
[here we use the effective potential V0ð�Þ in its renormal-
ized form (20)]

@

@�
VLð�Þ ¼ � 2�

�
ln

�
M0L

4�

�
� 2��

�
� 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2L2 þ �2�2
p

� 2�
X1
n¼1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2ð2nþ �Þ2 þ L2�2
p � 1

2n�

�

� 2�
X1
n¼1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2ð2n� �Þ2 þ L2�2
p � 1

2n�

�
;

(A9)

where � ¼ 0:577 . . . is the Euler constant. Integrating both
sides of (A9) over �, we obtain the final expression for the
effective potential VLð�Þ of the initial GN model in the
vacuum, when the space coordinate is compactified

VLð�Þ � VLð0Þ ¼ ��2

�
ln

�
M0L

4�

�
� �2�

�

� 2

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2L2 þ �2�2

p
þ 2��

L2

� 2

L2

X1
n¼1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð2nþ �Þ2 þ L2�2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð2n� �Þ2 þ L2�2

q

� 4n�� �2L2

2n�

�
: (A10)

In spite of the fact that (A10) is valid for arbitrary 0 �
�< 2, we find it more convenient to have another (equiva-
lent) expression for the function VLð�Þ at � ¼ 1. In this
case one can start again from the relation (A9), in which in
the second series it is necessary to shift the summation
index, i.e. n! nþ 1. Then, manipulating with convergent

infinite sums, we obtain

@

@�
V�¼1
L ð�Þ ¼ � 2�

�
ln

�
M0L

�

�
� 2��

�

� 4�
X1
n¼0

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2ð2nþ 1Þ2 þ L2�2
p

� 1

ð2nþ 1Þ�
�
: (A11)

Now, in order to get the effective potential, one should
integrate both sides of this relation over �:

V�¼1
L ð�Þ � V�¼1

L ð0Þ ¼ �2

�
ln

�
�

M0L

�
� �2�

�
� 4

L2

� X1
n¼0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð2nþ 1Þ2 þ L2�2

q

� ð2nþ 1Þ�� �2L2

2ð2nþ 1Þ�
�
:

(A12)

Finally, a few words about the phase structure of the
model at finite L. It is clear that if the antiperiodic bound-
ary conditions are imposed on the quark fields, i.e. � ¼ 1
in (21), the parameter L plays the role of the inverse
temperature in the ordinary GN model, but only in the
vacuum (with zero chemical potentials). In the last case the
critical properties of the GN model are well understood
(see, e.g., in [34]), so, by analogy, we can conclude that at
L< Lc ¼ �

M0
e�� the global minimum of the effective

potential (A12) lies at the point � ¼ 0. In this case the
chiral symmetry of the initial GN (1) model is not broken.
In contrast, at L > Lc the effective potential (A12) has a
nontrivial global minimum point. As a result, chiral sym-
metry is spontaneously broken down at sufficiently high L.
The situation is, however, quite different at periodic

boundary conditions, i.e. if � ¼ 0 in (21). In this case
the global minimum point of the corresponding effective
potential (A10) lies outside the point � ¼ 0 for all L � 0.
Indeed, it is clear from (A9) that the derivative of this
function is negative at sufficiently small values of �, so
there is always a local maximum of the effective potential
at the point � ¼ 0, and the chirally broken phase is real-
ized in the model for arbitrary L � 0.
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