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Diquark excitations of dense quark matter are considered in the framework of the Nambu–Jona-Lasinio
model with three types of massless quarks in the presence of a quark number chemical potential �. We
investigate the effective action of meson and diquark fields at sufficiently high values of �, where the
color-flavor locked (CFL) phase is realized, and prove the existence of NG bosons in the sector of
pseudoscalar diquarks. In the sector of scalar diquarks an additional NG boson is found, corresponding to
the spontaneous breaking of the U�1�B baryon symmetry in the CFL phase. Finally, the existence of
massive scalar and pseudoscalar diquark excitations is demonstrated.
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I. INTRODUCTION

It is well-known that at sufficiently high baryon densities
massless three-flavor QCD is in the so-called color-flavor
locked (CFL) phase [1,2]. In this phase the original
SU�3�L � SU�3�R � SU�3�c � U�1�B symmetry of QCD
is spontaneously broken down to the diagonal
SU�3�L�R�c subgroup. Correspondingly, seventeen mass-
less excitations must appear in the mass spectrum of the
theory. Eight of them might be used to ensure a mass of
gluons by the Anderson–Higgs mechanism. The properties
of the remaining nine, one scalar and eight pseudoscalar
Nambu–Goldstone (NG) bosons, as well as other collec-
tive modes of the CFL phase were studied already in the
framework of weak-coupling QCD [3–5].

It is clear that a weak-coupling QCD analysis of the
color superconductivity phenomena, including the CFL
one, can only be trusted at rather high baryon densities
or, correspondingly, for values of the quark number chemi-
cal potential �� 1 GeV [6]. At moderate values of ��
500 MeV, where weak-coupling QCD is not applicable,
the description of color superconductivity is more adequate
in the framework of effective theories for the low energy
QCD region. In particular, since massless excitations might
play an important role in different transport phenomena, a
chiral effective meson theory for the pseudoscalar NG
bosons of the CFL phase was also constructed [7,8] (see
also the recent review on this topic [9] and references
therein).

Another effective quark model approach to low density
QCD is based on the Nambu–Jona-Lasinio (NJL) type of
models. Since the NJL model contains the microscopic
quark degrees of freedom, it is more fundamental and
preferable, especially for the investigation of dynamical
processes in dense baryonic matter, than chiral meson
theories. On the other hand, it is also more suitable for

the description of physics at low baryon densities than
weak-coupling QCD. In particular, in the three-flavor
NJL model the CFL effect was already considered, e.g.,
in [10] (see also the review [11]), where some aspects of
the phase structure of dense quark matter were discussed,
including the influence of the s-quark bare mass, color- and
electric charge neutrality conditions, external magnetic
field, etc. However, in spite of the fact that the lightest
bosons may play an essential role e.g. in the cooling
processes of neutron stars, up to now only few attention
was paid to the consideration of the CFL ground state
bosonic excitations, i.e. mesons and diquarks, and their
dynamics in the framework of NJL models (see, however,
the papers [12,13], where the properties of the massless
NG boson, corresponding to the spontaneous breaking of
the baryon U�1�B symmetry in the CFL phase, were con-
sidered). In contrast, the properties of �-mesons and di-
quarks, surrounded by color superconducting quark matter,
were already discussed in the framework of the two-flavor
NJL model [14–18].

In the present paper we are going to study meson and
diquark excitations of the CFL ground state in the frame-
work of the massless three-flavor NJL model. As in [14–
16], our consideration is based on the effective action,
which is a generating functional for one-particle irreduc-
ible Green functions. They permit to get informations
about the masses of bosonic excitations of the CFL phase.
In the first step we will rederive the well–known result that
in the normal phase of quark matter the NG bosons are just
pseudoscalar mesons. Next, it will be shown that in the
CFL phase the NG bosons are scalar- and pseudoscalar
diquark excitations. Finally, we will demonstrate that in the
CFL phase there appear massive scalar and pseudoscalar
diquarks which are composed into a charged triplet and
singlet as well as a neutral singlet of the SU(3) group.
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II. NJL MODEL AND EFFECTIVE
MESON-DIQUARK ACTION

Let us consider the following NJL model with three
massless quark flavors

 

L � �q	��i@� ���0
q�G1

X8

a�0

	� �q�aq�2 � � �qi�5�aq�2


�G2

X
A�2;5;7

X
A0�2;5;7

f	 �qCi�5�A�A0q
	 �qi�5�A�A0qC


� 	 �qC�A�A0q
	 �q�A�A0qC
g: (1)

In (1), � � 0 is the quark number chemical potential,
which is the same for all quark flavors, qC � C �qt, �qC �
qtC are charge-conjugated spinors, and C � i�2�0 is the
charge conjugation matrix (the symbol t denotes the trans-
position operation). The quark field q � qi� is a flavor and
color triplet as well as a four-component Dirac spinor,
where i, � � 1, 2, 3. (Roman and Greek indices refer to
flavor and color indices, respectively; spinor indices are
omitted.) Furthermore, we use the notations �a, �a for
Gell-Mann matrices in the flavor and color space, respec-

tively, (a � 1; . . . ; 8); �0 �
��
2
3

q
is proportional to the unit

matrix in the flavor space. Clearly, the Lagrangian (1) as a
whole is invariant under transformations from the color
group SU�3�c. In addition, it is symmetric under the chiral
group SU�3�L � SU�3�R (chiral transformations act on the
flavor indices of quark fields only) as well as under the
baryon-number conservation group U�1�B and the axial
group U�1�A.1

The linearized version of the Lagrangian (1) contains
collective bosonic fields and looks like

 

~L � �q	��i@� ���0 � �a�a � i�5�a�a
q

�
1

4G1
	�a�a � �a�a


�
1

4G2
	�s

AA0�
s
AA0 ��p

AA0�
p
AA0 
 �

�s
AA0

2
	 �qCi�5�A�A0q


�
�s
AA0

2
	 �qi�5�A�A0q

C
 �
�p
AA0

2
	 �qC�A�A0q


�
�p
AA0

2
	 �q�A�A0qC
; (2)

where here as well as in the following the summation over
repeated indices a � 0; . . . ; 8 and A, A0 � 2, 5, 7 is im-
plied. Lagrangians (1) and (2) are equivalent which simply
follows from the equations of motion for the bosonic fields

 

�a�x� � �2G1� �q�aq�;

�s
AA0 �x� � �2G2� �qCi�5�A�A0q�;

�s
AA0 �x� � �2G2� �qi�5�A�A0qC�;

�a�x� � �2G1� �qi�5�aq�;

�p
AA0 �x� � �2G2� �qC�A�A0q�;

�p
AA0 �x� � �2G2� �q�A�A0qC�:

(3)

One can easily see from (3) that the mesonic fields
�a�x�, �a�x� are real quantities, i.e. ��a�x��y � �a�x�,
��a�x��

y � �a�x� (the superscript symbol † denotes the
hermitian conjugation), whereas all diquark fields �s;p

AA0 �x�
are complex ones, i.e.

 ��s
AA0 �x��

y � �s
AA0 �x�; ��p

AA0 �x��
y � �p

AA0 �x�:

Moreover, �s
AA0 �x� and �p

AA0 �x� are scalars and pseudosca-
lars, correspondingly.

Let us introduce the flavor group SU�3�f � SU�3�L�R,
which is the diagonal subgroup of the chiral group.
Then, all scalar diquarks �s

AA0 �x� form an
��3c; �3f�-multiplet of the SU�3�c � SU�3�f group, i.e. they
are a color and flavor antitriplet. The same is true for
pseudoscalar diquarks �p

AA0 �x� which are also the compo-
nents of an ��3c; �3f�-multiplet of the SU�3�c � SU�3�f
group. Evidently, all diquarks �s;p

AA0 �x� have the same non-
zero baryon charge. All the real �a�x� and �a�x� fields are
color singlets. Moreover, the set of scalar �a�x�-mesons is
decomposed into a direct sum of the singlet and octet
representations of the diagonal flavor group SU�3�f. The
same decomposition into multiplets is true for the set of all
pseudoscalar �a�x�-mesons. Clearly, in this case the octet
is constructed from three pions (�� and �0), four kaons
(K0, �K0 and K�) and the eta-meson (	8), whereas the
singlet (	0) corresponds to the 	0-meson.

Next, in order to use the Nambu–Gorkov formalism, we
put the quark fields and their charge conjugates together
into a bispinor

 � �
q

qc

� �

so that the Lagrangian (2) takes the compact form
 

~L � �
1

4G1
	�a�a � �a�a


�
1

4G2
	�s

AA0�
s
AA0 � �p

AA0�
p
AA0 
 �

1

2
��Z�; (4)

where Z is the 2� 2-matrix in the Nambu–Gorkov space,

 Z �
D�; �K
�K; D�

� �
; (5)

and the following notations are adopted

1In a more realistic case, the additional ‘t Hooft six-quark
interaction term should be taken into account in order to break
the axial U�1�A symmetry [10]. However, in the present consid-
eration we omit the ‘t Hooft term, for simplicity.
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D� � i��@����
0��; �� �a�a� i�

5�a�a;

K� ��p
AA0 � i�

s
AA0�

5��A�A0 ; D� � i��@����0��t;

�t � �ta�a� i�5�a�ta; K � ��p
AA0 � i�

s
AA0�

5��A�A0 :

(6)

Now, integrating out the quark fields in the partition func-
tion with the Lagrangian (4) (this procedure is presented in
detail in [16]), we obtain the effective action for the
considered NJL model in the one-fermion loop approxi-
mation,
 

Seff��a;�a;�
s;p
AA0 ;�

s;p
AA0 � � �

Z
d4x

�
�2
a � �

2
a

4G1

�
�s
AA0�

s
AA0 � �p

AA0�
p
AA0

4G2

�

�
i
2

Tr lnZ: (7)

Besides of an evident trace over the two-dimensional
Nambu–Gorkov matrix, the Tr-operation in (7) stands for
calculating the trace in spinor, flavor, color as well as four-
dimensional coordinate spaces, correspondingly. Let us
suppose that parity is conserved so that all pseudoscalar
diquark and meson fields have zero ground state expecta-
tion values, i.e. h�p

AA0 �x�i � 0 and h�a�x�i � 0. Further-
more, since at zero s-quark mass, ms � 0, only the com-
petition between the normal quark matter phase and the
CFL one is relevant to the physics of dense QCD (see, e.g.,
Fig. 1 in [2], where the corresponding phase portrait for
QCD with two massless u, d-quarks at zero temperature is
presented in terms of �, ms), we permit in the present
consideration nonzero ground state expectation values only
for �0�x� and �s

AA�x� fields (A � 2, 5, 7). Namely, let
h�0�x�i � �o0 , h�s

AA�x�i � �, h�s
AA�x�i � �, where A �

2, 5, 7, but other boson fields from (3) have zero ground
state expectation values. In this case, if � � 0, then quark

matter is in the normal phase, where at �o0 � 0 the ground
state is an SU�3�c � SU�3�f � U�1�B-invariant one. If
� � 0, then the CFL phase is realized in the model, and
the initial symmetry is spontaneously broken down to
SU�3�L�R�c. Now, let us make the following shifts of
bosonic fields in (7): �0�x� ! �0�x� � �

o
0 , �s

AA�x� !
�s
AA�x� ��, �s

AA�x� ! �s
AA�x� ��, where A � 2, 5, 7,

and other bosonic fields remain unshifted. (Obviously, the
new shifted bosonic fields �0�x�;�

s
AA�x�, etc. now denote

the (small) quantum fluctuations around the mean values
�o0 , �, etc. of mesons and diquarks rather than the original
fields (3).) In this case

 Z!
D�o ; �Ko
�Ko; D�o

� �
�

�; K
K; �t

� �

� S�1
0 �

�; K
K; �t

� �
; (8)

whereKo,Ko,D�o , �o, �t
o are the corresponding quantities

(6), in which all bosonic fields are replaced by their own
ground state expectation values, i.e. �0�x� ! �o0 , �a�x� !
0, �s

AA�x� ! �, �p
AA0 �x� ! 0, etc. and S0 is the quark

propagator matrix in the Nambu–Gorkov representation
(its matrix elements Sij are given in the Appendix). Then,
expanding the obtained expression into a Taylor-series up
to second order of small bosonic fluctuations, we have
 

Seff��a;�a;�
s;p
AA0 ;�

s;p
AA0 � � S�0�eff � S�2�eff��a;�a;�

s;p
AA0 ;�

s;p
AA0 �

� � � � ; (9)

where

 S �0�eff � �
Z
d4x

�
�o0�

o
0

4G1
�

3j�j2

4G2

�
�
i
2

Tr ln�S0�

� ����o0 ;�;�
�
Z
d4x; (10)

 S �2�eff��a;�a;�
s;p
AA0 ;�

s;p
AA0 � � �

Z
d4x

�
�2
a � �2

a

4G1
�

�s
AA0�

s
AA0 � �p

AA0�
p
AA0

4G2

�
�
i
4

Tr
�
S0

�; K
K; �t

� �
S0

�; K
K; �t

� ��
: (11)

Notice that the term linear in meson and diquark fields
vanishes in (9) due to the gap equations (see below). In (10)
the quantity � is the thermodynamic potential of the
system. In terms of M �

��
2
3

q
�o0 it looks like

 

��M;�;�� �
3M2

8G1
�

3j�j2

4G2
� 8

Z d3q

�2��3
fE�� � E

�
� g

�
Z d3q

�2��3
fE�2� � E

�
2�g; (12)

where �E�� �
2 � �E��2 � j�j2, �E�2��

2 � �E��2 � 4j�j2,
E� � E��, E �

������������������
~q2 �M2

p
. Starting from (12), one

can find the gap equations @�=@� � 0 and @�=@M �

0, which supply us with the values of M, � in the ground
state of the system:
 

@�

@M
�

3M
4G1
� 2M

Z d3q

�2��3E

�
4E�

E��
�

4E�

E��
�

E�

2E�2�

�
E�

2E�2�

�

� 0; (13)

 

@�

@�
�

3�

4G2
��

Z d3q

�2��3

�
4

E��
�

4

E��
�

2

E�2�

�
2

E�2�

�
� 0:

(14)

Since the integrals in the right hand sides of (12)–(14) are
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ultraviolet divergent, we regularize them as well as the
other three-dimensional divergent integrals below by im-
plementing a cutoff in the integration regions, j ~qj<�. In
all numerical calculations below, we use the following
values of the model parameters (see, e.g., Ref. [11])

 � � 602:3 MeV; G1�2 � 2:319; G2 � 3G1=4:

(15)

Suppose that � is a real quantity. In this case, since the
thermodynamic potential � (12) is an even function in
both the M and � variables, it is enough to study it only in
the region fM � 0;� � 0g. Just for this region a graph of
��M;�� is presented in Fig. 1 at � � �c � 329 MeV. It
is clear from Fig. 1 that in this case the thermodynamic
potential has two global minimum points (GMP), A and B.
The point A with coordinates �Mc; 0�, where Mc �
355 MeV, lies on the M-axis and corresponds to the nor-
mal quark matter phase, whereas the point B with coordi-
nates �0;�c�, �c � 86 MeV, is arranged on the �-axis and
corresponds to the CFL phase of dense baryonic matter.
(Evidently, both A and B are solutions of the gap Eqs. (13)
and (14). In addition, as is seen from Fig. 1, there are
another solutions of the gap equations which, however,
correspond to a maximum- or saddle points of the thermo-
dynamic potential.) If�<�c, the function � has only one
GMP of the A-type, i.e. it lies on the M-axis. So, in this
case the normal quark matter phase is realized in the
model. In contrast, if �>�c, then the single GMP of
the �-function is located on the �-axis, i.e. it is of the
B-type, and the CFL phase occurs. The dependence of the
coordinates (gaps) of the GMP on the chemical potential is
presented in Fig. 2. Since the GMP jumps at � � �c from
A to B (or vice versa), one may conclude that at � � �c a
first order phase transition takes place in the system.

The effective action S�2�eff in (11) is really a generating
functional of the one-particle irreducible (1PI) two-point
Green functions of mesons and diquarks both in the normal
and CFL phases, namely

 �XY�x� y� � �

2S�2�eff


Y�y�
X�x�
; (16)

where X�x�, Y�x� � �a�x�, �b�x�, �s;p
AA0 �x�, �s;p

BB0 �x�. These
Green functions are very useful, in particular, in determin-
ing the dispersion relations and masses of particles. In the
following, we shall say that in the theory there is a mixing
between two different particles with corresponding fields
X�x� and Y�x�, if their 1PI Green function �XY�x� y� is not
equal to zero. By analyzing the structure of the effective
action (11), it is possible to show that in the NJL model (1)
with three massless quarks, mesons and diquarks are not
mixed both in the normal (�<�c) and CFL phases
(�>�c).

2 Moreover, each pseudoscalar �a�x� field (as
well as scalar �b�x� one) does not mix with other meson
fields, apart from itself. So, in the normal phase (where
� � 0 and M � 355 MeV) one can obtain the following
expression ���i�i�p� for the Fourier transformation of the
two-point 1PI Green function of pseudoscalar mesons
�i�x�, taken in the rest frame p � �p0; 0; 0; 0�:

 

�� �i�i�p0� � p2
0

Z d3q

�2��3
�

12

E	p2
0 � 4E2


: (17)

(In obtaining (17), the gap Eq. (13) was used in order to
eliminate the coupling constant G1 from the final expres-
sion.) Evidently, this expression turns into zero at p2

0 � 0.
Since the relation (17) is true for i � 0; 1; . . . ; 8, it means
that nine massless excitations, Nambu–Goldstone (NG)
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FIG. 1. The behavior of the thermodynamic potential � vs M
and � at the critical value of the chemical potential �c �
329 MeV.
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eV
]

µc

M

∆

µ [GeV]

FIG. 2. The coordinates M and � (gaps) of the global mini-
mum point of the thermodynamic potential vs the chemical
potential �. Here �c � 329 MeV.

2Note, if some of the current quark masses are nonzero, then
there arises a mixing between mesons and diquarks in the CFL
phase. This effect is the analogy of the mixing between the
�-meson and the scalar diquark in the color superconducting
phase of a two-flavor NJL model with nonzero masses of u- and
d-quarks [15,16].
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bosons, do exist in the pseudoscalar meson sector of the
model in the normal phase. This fact corresponds to a
spontaneous symmetry breaking in the normal phase
down to the group SU�3�c � SU�3�f � U�1�B.

Recall, that our initial NJL model (1) is invariant
under the symmetry group SU�3�L � SU�3�R � SU�3�c �
U�1�B � U�1�A, which contains an additional (nonphysi-
cal) axial subgroup U�1�A. So in the CFL phase, where the
ground state is symmetric under the group SU�3�L�R�c, an
additional NG boson must appear in the mass spectrum of
the model giving altogether 18 NG bosons.

Note that in the sector of the meson excitations of the
CFL phase we do not find any massless particle.

III. MASSLESS DIQUARK EXCITATIONS IN THE
CFL PHASE

A further consideration of the effective action (11)
shows that in the CFL phase, where M � 0 and � � 0,
scalar and pseudoscalar diquarks are separated from each
other. Moreover, the 18 pseudoscalar diquarks (nine
�p
AA0 �x� and nine �p

AA0 �x� fields) may be divided into four
sectors: p�57; 75�, p�25; 52�, p�27; 72� and p�257�. Each of
the sectors p�AA0; A0A�, where A � A0, is composed of
�p
AA0 �x�, �p

AA0 �x�, �p
A0A�x� and �p

A0A�x�-diquarks, whereas
the sector p�257� is composed of six fields, �p

22 �x�, �p
55 �x�,

�p
77 �x�, �p

22�x�, �p
55�x�, and �p

77�x�. There is a mixing
between diquarks from the same sector, however fields
from different sectors are not mixed. (The analogous situ-
ation takes place for the set of scalar diquarks.)

Partially, these mixing properties of the pseudoscalar
diquarks are explained by the ground state SU�3�L�R�c
symmetry of the CFL phase. Indeed, with respect to this
group all pseudoscalar diquarks are decomposed into a
direct sum of the �3 and �6 multiplets. The fields �p

AA�x�
with A � 2, 5, 7 are in an antitriplet �3, whereas all diquarks
of the form �p

A0A�x� (A0 � A) are in an antisixtet �6. It is
clear from symmetry considerations that diquarks from �3
do not mix with diquarks from �6 (here we use the termi-
nology, introduced just after (16)). Since the mixing be-
tween a particle and corresponding antiparticle is allowed
as a rule, we may conclude that pseudoscalar diquarks
from the sector p�257� are separated from the other six
�p
A0A�x�- and six �p

A0A�x�-diquarks (A0 � A). A further
separation between components of the �6-multiplet and
corresponding antiparticles occurs on a dynamical basis,
i.e. it is due to the structure of the effective action (11) and
the quark propagator matrix (A1)–(A4). As a result, one
can show that these diquarks are divided into the three
above-mentioned sectors, p�57; 75�, p�25; 52�, p�27; 72�.

Below we suppose that the gap � is a real positive
number in the CFL phase.

A. The case of p�AA0; A0A� sectors

Let us first study the mass spectrum of the excitations,
e.g., in the sector p�57; 75�. The two-point 1PI Green
functions of pseudoscalar diquarks from this sector can
be obtained from (11) by the relation (16). In the rest
frame, where p � �p0; 0; 0; 0�, the Fourier transforms of
these 1PI Green functions form the following matrix:

 

�� 57;75�p0� �

���p
57

�p
57
�p0� ���p

57
�p

57
�p0� ���p

57
�p

75
�p0� ���p

57
�p

75
�p0�

���p
57

�p
57
�p0� ���p

57
�p

57
�p0� ���p

57
�p

75
�p0� ���p

57
�p

75
�p0�

���p
75

�p
57
�p0� ���p

75
�p

57
�p0� ���p

75
�p

75
�p0� ���p

75
�p

75
�p0�

���p
75

�p
57
�p0� ���p

75
�p

57
�p0� ���p

75
�p

75
�p0� ���p

75
�p

75
�p0�

0
BBBBB@

1
CCCCCA: (18)

After tedious but straight-forward calculations, based on the technique elaborated in our previous papers [14–16] (see also
[17,18]) and used in the consideration of mesons and diquarks in the color superconducting phase of the two-flavor NJL
model, the matrix (18) takes the form:

 

�� 57;75�p0� �

0 A C 0
B 0 0 C
C 0 0 A
0 C B 0

0
BBB@

1
CCCA; (19)

where A � �� p0�, B � �� p0� and

 

� �
Z d3q

�2��3

�
6E��p

2
0 � �E

�
� � E

�
2��

2�2E�� � E
�
2��

9E��E
�
2�	p

2
0 � �E

�
� � E

�
2��

2

�

4p2
0 � 4�E�� �

2 � 10�2

3E�� 	p
2
0 � 4�E�� �

2


�
�
Z d3q

�2��3
fE�� ! E�� ; E

�
2� ! E�2�g; (20)
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� �
Z d3q

�2��3

�
E��E�� � E

�
2��

3E��E
�
2�	p

2
0 � �E

�
� � E

�
2��

2


�
10E�

3E�� 	p
2
0 � 4�E�� �

2


�

�
Z d3q

�2��3
fE� ! E�; E�� ! E�� ; E

�
2� ! E�2�g; (21)

 

C �
Z d3q

�2��3

�
2�2�E�� � E

�
2��

3E��E
�
2�	p

2
0 � �E

�
� � E

�
2��

2


�
10�2

3E�� 	p
2
0 � 4�E�� �

2


�

�
Z d3q

�2��3
fE�� ! E�� ; E

�
2� ! E�2�g: (22)

(To obtain the above expressions for� and�, we have used
the gap Eq. (14) in order to eliminate the coupling constant
G2 from corresponding 1PI Green functions.) Evidently, in

the case of mixing between particles the information about
their masses should be extracted from zeros of a matrix
determinant, composed from corresponding 1PI Green
functions. So, in our case it is necessary to study the
equation det ��57;75�p0� � 0, which takes the following
form

 det ��57;75�p0� � �AB� C
2�2

� 	��� C���� C� � p2
0�

2
2 � 0: (23)

In the p2
0-plane, each zero of this equation defines a mass

squared of a bosonic excitation of the CFL phase ground
state in the p�57; 75� sector. Since this sector contains four
pseudoscalar diquarks, one should search for four solutions
of the Eq. (23) in the p2

0-plane. However, due to the
structure of (23), it is clear that this equation admits at
least two different solutions (each being two-fold degen-
erate), which are given by the zeros of the expression in the
square bracket. Since

 

�� C � p2
0

Z d3q

�2��3

�
p2

0	2E
�
� � 4E�2�
 � 8�E�� �

3 � �E�� �
2E�2� � 10E�� �E

�
2��

2 � 5�E�2��
3

3E��E
�
2�	p

2
0 � �E

�
� � E

�
2��

2
	p2
0 � 4�E�� �

2


�

� p2
0

Z d3q

�2��3
fE�� ! E�� ; E

�
2� ! E�2�g � p2

0F�p
2
0�; (24)

the square bracket in (23) becomes zero at the point p2
0 �

0. So, in the p�57; 75� sector there are two massless pseu-
doscalar excitations, i.e. NG bosons. Two other excitations
have the same nontrivial mass squared which is the solu-
tion of the equation

 ��� C�F�p2
0� � �

2 � 0: (25)

Its investigation is outside the scope of the present paper. A
similar situation occurs in the other four-component sec-
tors p�25; 52� and p�27; 72�. Namely, for both sectors the
1PI Green function matrix has the form (19). Hence, in
each of these sectors there are two NG bosons as well as
two massive excitations with the same mass squared. Its
value is given by the solution of the Eq. (25).

To summarize, in the pseudoscalar diquark sectors
p�57; 75�, p�25; 52�, and p�27; 72� we have found six
massless diquark excitations, which are NG bosons, as
well as six pseudoscalar diquark excitations with a nonzero
mass which is a solution of the Eq. (25). In total, these six
massive real pseudoscalar diquarks form a complex
(charged) triplet of the SU�3�L�R�c group.

B. The case of the p�257� sector

All the two-point 1PI Green functions of the pseudosca-
lar diquarks, entering the p�257� sector, are defined by the
relation (16). In momentum space representation and in the
rest frame, i.e. at p � �p0; 0; 0; 0�, they form the following
6� 6 matrix:

 

�� 257�p0� �

���p
22�p

22
�p0� ���p

22�p
22
�p0� ���p

22�p
55
�p0� ���p

22�p
55
�p0� ���p

22�p
77
�p0� ���p

22�p
77
�p0�

���p
22 �p

22
�p0� ���p

22 �p
22
�p0� ���p

22 �p
55
�p0� ���p

22 �p
55
�p0� ���p

22 �p
77
�p0� ���p

22 �p
77
�p0�

���p
55

�p
22
�p0� ���p

55
�p

22
�p0� ���p

55
�p

55
�p0� ���p

55
�p

55
�p0� ���p

55
�p

77
�p0� ���p

55
�p

77
�p0�

���p
55

�p
22
�p0� ���p

55
�p

22
�p0� ���p

55
�p

55
�p0� ���p

55
�p

55
�p0� ���p

55
�p

77
�p0� ���p

55
�p

77
�p0�

���p
77�p

22
�p0� ���p

77�p
22
�p0� ���p

77�p
55
�p0� ���p

77�p
55
�p0� ���p

77�p
77
�p0� ���p

77�p
77
�p0�

���p
77 �p

22
�p0� ���p

77 �p
22
�p0� ���p

77 �p
55
�p0� ���p

77 �p
55
�p0� ���p

77 �p
77
�p0� ���p

77 �p
77
�p0�

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: (26)
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A tedious but straight-forward calculation yields:

 

�� 257�p0� �

R P T W T W
Q R Z T Z T
T W R P T W
Z T Q R Z T
T W T W R P
Z T Z T Q R

0
BBBBBBBB@

1
CCCCCCCCA
: (27)

The determinant of this matrix looks like

 

det ��257�p0� � 	�T � R�2 � �W � P��Z�Q�
2

� f�2T � R�2 � �2W � P��2Z�Q�g; (28)

where P � I0 � p0I1, Q � I0 � p0I1, W � J0 � p0J1,
Z � J0 � p0J1, and

 

I0�p2
0� �

1

4G2
�
Z d3q

�2��3

�
28

9
�
�E�� �

2 � �E��2

E�� 	p
2
0 � 4�E�� �

2

�

4

9
�
�E�2��

2 � �E��2

E�2�	p
2
0 � 4�E�2��

2

�

2

9
�
�E�� � E

�
2��	E

�
�E
�
2� � �E

��2


E��E
�
2�	p

2
0 � �E

�
� � E

�
2��

2


�

�
Z d3q

�2��3
fE��;2� ! E��;2�; E

� ! E�g; (29)

 

I1�p
2
0� �

Z d3q

�2��3

�
28

9
�

E�

E�� 	p
2
0 � 4�E�� �

2

�

4

9
�

E�

E�2�	p
2
0 � 4�E�2��

2

�

2

9
�

�E�� � E
�
2��E

�

E��E
�
2�	p

2
0 � �E

�
� � E

�
2��

2


�

�
Z d3q

�2��3
fE��;2� ! E��;2�; E

� ! �E�g; (30)

 

R�p2
0� � ���2�

Z d3q

�2��3

�
28

9
�

1

E�� 	p
2
0 � 4�E�� �

2

�

16

9
�

1

E�2�	p
2
0 � 4�E�2��

2

�

4

9
�

E�� � E
�
2�

E��E
�
2�	p

2
0 � �E

�
� � E

�
2��

2


�

�
Z d3q

�2��3
fE��;2� ! E��;2�g; (31)

 

J0�p2
0� �

Z d3q

�2��3

�
4

9
�
�E�2��

2 � �E��2

E�2�	p
2
0 � 4�E�2��

2

�

2

9
�
�E�� �

2 � �E��2

E�� 	p
2
0 � 4�E�� �

2

�

1

9
�
�E�� � E

�
2��	E

�
�E
�
2� � �E

��2


E��E
�
2�	p

2
0 � �E

�
� � E

�
2��

2


�

�
Z d3q

�2��3
fE��;2� ! E��;2�; E

� ! E�g; (32)

 

J1�p
2
0� �

Z d3q

�2��3

�
4

9
�

E�

E�2�	p
2
0 � 4�E�2��

2

�

2

9
�

E�

E�� 	p
2
0 � 4�E�� �

2

�

1

9
�

�E�� � E
�
2��E

�

E��E
�
2�	p

2
0 � �E

�
� � E

�
2��

2


�

�
Z d3q

�2��3
fE��;2� ! E��;2�; E

� ! �E�g; (33)

 

T�p2
0� � ���2�

Z d3q

�2��3

�
16

9
�

1

E�2�	p
2
0 � 4�E�2��

2

�

2

9
�

1

E�� 	p
2
0 � 4�E�� �

2

�

2

9
�

E�� � E
�
2�

E��E
�
2�	p

2
0 � �E

�
� � E

�
2��

2


�

�
Z d3q

�2��3
fE��;2� ! E��;2�g: (34)

In terms of the Ik, Jl-functions, the expression (28) can be rewritten as

 

det ��257�p0� � 	�T � R� J0 � I0��T � R� J0 � I0� � p
2
0�J1 � I1�

2
2f�2T � R� 2J0 � I0��2T � R� 2J0 � I0�

� p2
0�2J1 � I1�

2g: (35)

As in the previous section, the full spectrum of the CFL
phase excitations in the p�257�-sector of the model can
be explicitly computed by evaluating the zeros of the
determinant (28) (or (35), alternatively). Since the
p�257�-sector consists of six diquark degrees of freedom,

we expect that det ��257�p0� has at least six zeros in the
p2

0-plane.
Eliminating in (29) the coupling constant G2 again with

the help of the gap Eq. (14), one can easily show that
T�0� � J0�0� and R�0� � I0�0�. Evidently, in this case
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both the square bracket expression and the brace one from
(35) turn into zero at p2

0 � 0. Hence, in the p�257�-sector
of the model there are three pseudoscalar NG boson ex-
citations. Now let us obtain some information about the
remaining three excitations, which are massive ones. For
this purpose, similarly to (24), it is possible to extract in an
evident form the factor p2

0 from the expressions in the curly
brackets of (35), i.e.
 

T � R� J0 � I0 � p2
0��p

2
0�;

2T � R� 2J0 � I0 � p2
0’�p

2
0�:

(36)

Then it is clear from (35) that two of these excitations have
an identical mass which is a solution of the equation

 ��p2
0��T � R� J0 � I0� � �J1 � I1�

2 � 0: (37)

In total, they form a complex (charged) singlet of the group
SU�3�R�L�c. Finally, there is a further diquark excitation,
whose mass obeys another equation

 ’�p2
0��2T � R� 2J0 � I0� � �2J1 � I1�

2 � 0: (38)

Evidently, this diquark is also a SU�3�R�L�c-singlet. As a
result, we have proved that there are nine pseudoscalar NG
bosons (diquarks) in the mass spectrum of the initial NJL
model. Moreover, it contains massive pseudoscalar di-
quarks, composed of a complex triplet and singlet as well
as real singlet of the group SU�3�f�c.

Since in the chiral limit, where all quarks are massless,
the two-point 1PI Green functions of scalar diquarks are
identical to the corresponding Green functions of pseudo-
scalar diquark fields, one may conclude that the diquark
spectrum contains nine scalar massless excitations. In real
QCD, eight of them should supply a mass to gluons
through the Anderson–Higgs mechanism, but the remain-
ing massless excitation is the NG boson corresponding to
the spontaneous breaking of the baryon U�1�B symmetry.
In addition, there are a massive complex triplet and singlet
as well as a real singlet of scalar diquarks in the mass
spectrum of the model.

IV. CONCLUSIONS

In the present paper the two-point 1PI Green functions
of scalar and pseudoscalar diquarks are investigated in the
framework of a three-flavor NJL model with massless
quarks and nonzero chemical potential �. The model con-
tains interaction terms both in the quark-antiquark and
quark-quark channels, but the ‘t Hooft six-quark term is
omitted, for simplicity (see (1)). In this case, the initial
symmetry group of the model, i.e. SU�3�L � SU�3�R �
SU�3�c � U�1�B � U�1�A does contain the axial U�1�A
subgroup. As a result, we have shown that at sufficiently
low values of �, �<�c � 330 MeV, the normal quark
matter phase with SU�3�L�R � SU�3�c � U�1�B is realized
and nine massless pseudoscalar mesons (which are the NG
bosons), ��, �0, K0, �K0, K�, 	8 and 	0, appear. (In

massless QCD, where U�1�A is broken on the quantum
level, or in NJL models with ‘t Hooft interaction the
	0-meson is not a NG boson.)

At �>�c the original symmetry of the model is spon-
taneously broken down to SU�3�L�R�c, and the CFL phase
does occur. In this case, in accordance with the Goldstone
theorem, eighteen NG bosons must appear in the mass
spectrum. Considering 1PI Green functions, we have found
nine NG bosons in the sector of scalar diquark excitations.
Eight of them have to be considered as nonphysical, since
in real QCD they supply masses to gluons by the
Anderson–Higgs mechanism. The remaining scalar NG
boson corresponds to a spontaneous breaking of the baryon
U�1�B symmetry. The other nine NG bosons are no more
pseudoscalar mesons, but now the massless excitations in
the pseudoscalar diquark sector of the model.

Besides NG diquarks, we have proved the existence of
massive diquark excitations in the CFL phase. They form
both pseudoscalar and scalar complex (charged) triplets
and singlets as well as a real (neutral) singlet of the group
SU�3�f�c. There arises the interesting question, whether
these diquark masses are above the threshold of fermion
pair excitations so that massive diquarks might eventually
decay into two NG bosons.3 The detailed numerical inves-
tigation of diquark masses as functions of the chemical
potential is outside the scope of this paper and will be
considered in a future publication. There, we are going to
study also the masses of mesons in the environment of
dense quark matter in the CFL phase.
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APPENDIX

In the Nambu–Gorkov representation the inverse quark
propagator matrix S�1

0 is given in (8). Using the tech-
niques, elaborated in [14–18], it is possible to obtain the
following expressions for the matrix elements of the quark
propagator matrix

 S0 �
S11; S12

S21; S22

� �

3Our earlier investigations of the dispersion relations of di-
quarks in color superconducting quark matter, composed of u
and d quarks (see the papers [15]), indicate that massive diquarks
may occur as resonances which are heavily damped. However,
the situation in the CFL phase might be different and needs a
special consideration.
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 S11�x; y� �
Z d4q

�2��4
e�iq�x�y�

�
q0 � E�

q2
0 � �E

�
B��

2 �
0 ���

�
q0 � E�

q2
0 � �E

�
B��

2 �
0 ���

�
; (A1)

 

S12�x; y� � �i�B
Z d4q

�2��4
e�iq�x�y�

�
1

q2
0 � �E

�
B��

2 �
5 ���

�
1

q2
0 � �E

�
B��

2 �
5 ���

�
; (A2)

 

S21�x; y� � �i�
B

Z d4q

�2��4
e�iq�x�y�

�
1

q2
0 � �E

�
B��

2 �
5 ���

�
1

q2
0 � �E

�
B��

2 �
5 ���

�
; (A3)

 S22�x; y� �
Z d4q

�2��4
e�iq�x�y�

�
q0 � E�

q2
0 � �E

�
B��

2 �
0 ���

�
q0 � E

�

q2
0 � �E

�
B��

2 �
0 ���

�
; (A4)

where M �
��
2
3

q
�o0 , ��� �

1
2 �1�

�0� ~� ~q�M�
E �. Moreover,

�E�B��
2 � �E��2 � j�j2B2, E� � E��, E �

������������������
~q2 �M2

p
and B �

P
A�2;5;7�A�A. (In these and other similar expres-

sions, q0 is a shorthand notation for q0 � i" � sgn�q0�,
where the limit "! 0� must be taken at the end of all
calculations. This prescription correctly implements the
role of � as the chemical potential and preserves the
causality of the theory.)

It is clear from (A1)–(A4) that all color- and flavor
dependences in the matrix elements S11, S12, S21 and S22

arise only due to the matrix B. In the nine-dimensional
space c� f, which is the direct production of color and
flavor spaces, the two 9� 9 matrices B and B2 take the
following forms

 B �

0 0 0 0 �1 0 0 0 �1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
�1 0 0 0 0 0 0 0 �1
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
�1 0 0 0 �1 0 0 0 0

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

;

B2 �

2; 0; 0; 0; 1; 0; 0; 0; 1
0; 1; 0; 0; 0; 0; 0; 0; 0
0; 0; 1; 0; 0; 0; 0; 0; 0
0; 0; 0; 1; 0; 0; 0; 0; 0
1; 0; 0; 0; 2; 0; 0; 0; 1
0; 0; 0; 0; 0; 1; 0; 0; 0
0; 0; 0; 0; 0; 0; 1; 0; 0
0; 0; 0; 0; 0; 0; 0; 1; 0
1; 0; 0; 0; 1; 0; 0; 0; 2

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

:

(A5)

Thus, the quark propagator S0 may be thought as the matrix
in the c� f space as well. Since it is an infinite series in
powers of B, the diagonalization of the matrix B means the
diagonalization of the propagator S0 in the c� f space.
Let us define in the c� f space the following matrix (its
rows are the ortonormal eigenvectors of the B-matrix,
corresponding to the eigenvalues 1 � � � � � 5 � 1,
6 � 7 � 8 � �1, 9 � �2):

 O �

1��
6
p 0 0 0 � 2��

6
p 0 0 0 1��

6
p

0 1��
2
p 0 1��

2
p 0 0 0 0 0

0 0 1��
2
p 0 0 0 1��

2
p 0 0

0 0 0 0 0 1��
2
p 0 1��

2
p 0

� 1��
2
p 0 0 0 0 0 0 0 1��

2
p

0 � 1��
2
p 0 1��

2
p 0 0 0 0 0

0 0 � 1��
2
p 0 0 0 1��

2
p 0 0

0 0 0 0 0 � 1��
2
p 0 1��

2
p 0

1��
3
p 0 0 0 1��

3
p 0 0 0 1��

3
p

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

: (A6)

Evidently, we have OOt � 1, detO � 1 and OB2Ot � diag�1; 1; . . . ; 1; 4� OBOt � diag�1; 1; 1; 1; 1;�1;�1;�1;�2�.
Moreover, the matrix O diagonalizes the quark propagator S0 in the direct-product space c� f: OS0O

t �
diag�S1; . . . ; S9�, where each of S1; . . . ; S8 corresponds to a Nambu–Gorkov representation of a propagator of the
quasiparticle with gap j�j, whereas S9 —to a quasiparticle with gap 2j�j. Hence, in the CLF phase all nine quasiparticles
form an SU(3)-octet with gap j�j and an SU(3)-singlet with gap 2j�j (see also [5,11]).
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