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In the framework of an extended Nambu–Jona-Lasinio model we are studying pion condensation
in quark matter with an asymmetric isospin composition in a gravitational field of the static Einstein
universe at finite temperature and chemical potential. This particular choice of the gravitational
field configuration enables us to investigate phase transitions of the system with exact consideration
of the role of this field in the formation of quark and pion condensates and to point out its influence
on the phase portraits. We demonstrate the effect of oscillations of the thermodynamic quantities
as functions of the curvature and also refer to a certain similarity between the behavior of these
quantities as functions of curvature and finite temperature. Finally, the role of quantum fluctuations
for spontaneous symmetry breaking in the case of a finite volume of the universe is shortly discussed.
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I. INTRODUCTION

Low-energy nonperturbative effects in quantum chromodynamics (QCD), especially at nonzero densities, can only
be studied by approximate methods within the framework of various effective models. It is well known that light meson
physics is described by four-fermion models, such as the Nambu–Jona-Lasinio (NJL) model, which was successfully
used to deal with dynamical chiral symmetry breaking (DχSB) both in the vacuum and in hot/dense baryonic matter
(see, e.g. [1, 2], as well as the reviews [3, 4] and references therein). Recently, much attention has been paid to the
effects of diquark condensation and color superconductivity (CSC). The first studies of the gap equations and the
Ginzburg-Landau free energy for a system of relativistic fermions led to the conclusion that superconductive and color
superconductive states may arise in baryonic matter [5, 6] (see also the recent papers [7, 8]). Another interesting
phenomenon, the condensation of charged pions, which may appear in dense hadronic matter due to an asymmetry
of its isospin composition, has been investigated in the framework of QCD-like effective models, including the NJL
model, as well [9, 10, 11, 12, 13, 14, 15].

Note that all these phenomena might be inherent to physics of compact stars, where rather strong magnetic as well
as gravitational fields are present. Therefore, investigations of the influence of an external (chromo-)magnetic field on
the properties of the DχSB phase transition [16, 17], color superconductivity [18] and pion condensation [19] effects are
quite appropriate. In particular, it was shown in [16, 17, 18, 19] that external fields significantly change the properties
of the chiral and CSC phase transitions. In several papers, in the framework of the NJL model, the influence of a
gravitational field on the DχSB due to the creation of a finite quark condensate 〈q̄q〉 has been investigated at zero
values of temperature and chemical potential [20, 21, 22, 23]. The study of the combined influence of curvature and
temperature has been performed in [24]. Recently, the dynamical chiral symmetry breaking and its restoration for
a uniformly accelerated observer due to the thermalization effect of acceleration was studied in [25] at zero chemical
potential. Further investigations of the influence of the Unruh temperature on the phase transitions in dense quark
matter with a finite chemical potential, and especially on the restoration of the broken color symmetry in CSC were
made in [26].

One of the widely used methods of accounting for gravitation is based on the expansion of the fermion propagator
in powers of small curvature R [27, 28]. For instance, in [29], the three-dimensional Gross-Neveu model in a spacetime
with a weakly curved two-dimensional surface was investigated, using an effective potential at finite curvature and
nonzero chemical potential. In paper [30], this weak curvature expansion was used in considering the DχSB at non-
vanishing temperature and chemical potential. It should, however, be mentioned that near the phase transition point,
one cannot consider the critical curvature Rc to be small and therefore the weak curvature expansion method can not
be applied. Hence, in the region near the critical regime different nonperturbative methods or exact solutions with
finite values of R should be used. This kind of solution with consideration for the chemical potential and temperature
in the gravitational background of a static Einstein universe has been considered in [31]. There it was demonstrated
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that chiral symmetry is restored at large values of the space curvature. Analogous studies of diquark condensation
and the related color symmetry breaking under the influence of a gravitational field have been performed recently in
the model of a static Einstein Universe in [32]. Recall that this model is widely discussed in literature either as a
solution of the Einstein equations with a given cosmological constant and a nonvanishing energy-momentum tensor
of an ideal fluid as a source, or as an initial state in inflationary cosmology with a scalar field, and the cosmological
constant as its vacuum energy (see, for instance, [33]). Moreover, the Einstein universe and other suitably generalized
compact curved spacetimes were extensively employed for studying the phenomenon of Bose-Einstein condensation
(see, e.g. [34] and references therein). As is well known, one of the possible models for the expanding universe is the
closed Friedmann model. Since the formation of quark condensates is expected to take place considerably faster than
the expansion rate of the Universe, its radius can be considered in our calculations as constant. In this sense, the
chosen model of a static Einstein universe can be considered as a simple cosmological model for a space with positive
curvature. On the other hand, the same form of the metric does also hold for the interior of a (collapsing) spherically
symmetric star, thereby admitting also a non-cosmological interpretation of the chosen model.

As was mentioned above, in quark matter there may arise another remarkable phenomenon, pion condensation.
Up to now little information about the properties of pion condensation in the presence of external fields has been
obtained. In particular, there arises the interesting question, what influence gravitational fields can produce on pion
condensation. The main aim of the present paper is just to give a detailed investigation of this issue.

In order to be able to consider the effects of gravitation on pion condensation in a rigorous nonperturbative way,
we will investigate here the phase structure of isotopically asymmetric quark matter in the framework of an extended
NJL model with dynamical breaking of chiral and flavor symmetries in the static Einstein universe. In particular, our
calculations are performed in the most simple case, restricting ourselves, for simplicity, to the flavor SU(2) group.
By using the mean field approximation, we will then derive an analytical expression for the thermodynamic potential
of the NJL model that will enable us to calculate the chiral and pion condensates of quarks moving in a space with
constant positive curvature. On this basis, we study, in particular, the phase portraits of the model. Our paper
is organized as follows. Section II, III contain the Nambu-Jona-Lasinio model in curved spacetime and the general
formalism for the derivation of the thermodynamical potential. Numerical calculations and conclusions are given in
sections IV, V. Finally, some estimates of the role of quantum fluctuations in the case of a closed universe are given
in the appendix.

II. NAMBU – JONA-LASINIO MODEL IN CURVED SPACETIME

Suppose that dense, isotopically asymmetric quark matter (in this case the densities of u and d quarks are different)
in curved spacetime is described by an extended NJL model with the following action:

S =

∫

d4x
√−g Lq, (1)

and the Lagrangian

Lq = q̄
[

iγν∇ν −m+ µγ0 + δµτ3γ
0
]

q +G
[

(q̄q)2 + (q̄iγ5~τq)2
]

, (2)

where the quark field q(x) ≡ qiα(x) is a flavor doublet (i = 1, 2 or i = u, d) and color triplet (α = 1, 2, 3) as well as
a four-component Dirac spinor (the summation in (2) over flavor, color and spinor indices is implied); τi (i = 1, 2, 3)
are Pauli matrices. In 4-dimensional curved spacetime with signature (+,−,−,−), the line element is written as

ds2 = ηâb̂e
â
µe

b̂
νdx

µdxν .

The gamma-matrices γµ, the metric gµν and the vierbein eµ
â , as well as the definitions of the spinor covariant derivative

∇ν and spin connection ωâb̂
ν are given by the following relations [28]:

{γµ(x), γν(x)} = 2gµν(x), {γâ, γb̂} = 2ηâb̂, ηâb̂ = diag(1,−1,−1,−1),

gµνg
νρ = δρ

µ, gµν(x) = eµ
â(x)eνâ(x), γµ(x) = eâ

µ(x)γâ. (3)

∇µ = ∂µ + Γµ, Γµ =
1

2
ωâb̂

µ σâb̂, σâb̂ =
1

4
[γâ, γb̂],

ωâb̂
µ =

1

2
eâλeb̂ρ[Cλρµ − Cρλµ − Cµλρ], Cλρµ = eâ

λ∂[ρeµ]â. (4)
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Here, the index â refers to the flat tangent space defined by the vierbein at spacetime point x, and the γâ(â = 0, 1, 2, 3)
are the usual Dirac gamma-matrices of Minkowski spacetime. Moreover γ5, is defined, as usual (see, e.g., [28]), i.e. to
be the same as in flat spacetime and thus independent of spacetime variables.

In order to describe the quark composition of matter we introduced µ = µB/3 in (2) as the quark number chemical
potential. Since the generator I3 of the third component of isospin is equal to τ3/2, the quantity δµ in (2) is half the
isospin chemical potential, δµ = µI/2. If the bare quark mass m is equal to zero, then at δµ = 0, apart from the
trivial color SU(3) symmetry, the Lagrangian (2) is invariant under the chiral group SUL(2)×SUR(2) transformations.
However, at δµ 6= 0 this symmetry is reduced to the subgroup UI3L(1)×UI3R(1) (here and above the subscripts L,R
imply that the corresponding group acts only on the left, right handed spinors, respectively). It is convenient to
present this symmetry as UI3(1) × UAI3(1), where UI3(1) and UAI3(1) are the isospin and axial isospin subgroup of
the chiral SUL(2) × SUR(2) group. Quarks are tranformed under these subgroups in the following way

UI3(1) : q → exp(iατ3)q, UAI3(1) : q → exp(iα′γ5τ3)q, (5)

where α, α′ are independent group parameters. At nonzero bare quark mass, m 6= 0, and nonzero isotopic chemical
potential, i.e. δµ 6= 0, the Lagrangian (2) is still invariant under the isospin subgroup UI3(1), but invariance with
respect to UAI3(1) does no longer hold in this case.

The linearized version of Lagrangian (2), that contains collective bosonic fields σ(x) and πk(x) (k = 1, 2, 3), has the
following form

L̃ = q̄
[

iγν∇ν + µγ0 + δµτ3γ
0 − σ −m− iγ5πkτk

]

q − 1

4G

[

σσ + πkπk

]

. (6)

From the Lagrangian (6), one can find the equations of motion for the bosonic fields,

σ(x) = −2G(q̄q); πk(x) = −2G(q̄iγ5τkq). (7)

It is clear from these relations that under isospin UI3(1) and axial isospin UAI3(1) transformations (5) the bosonic
fields (7) are changed in the following way:

UI3(1) : σ → σ; π3 → π3; π1 → cos(2α)π1 + sin(2α)π2; π2 → cos(2α)π2 − sin(2α)π1,

UAI3(1) : π1 → π1; π2 → π2; σ → cos(2α′)σ + sin(2α′)π3; π3 → cos(2α′)π3 − sin(2α′)σ. (8)

In the fermion one-loop (mean field) approximation, the effective action for the boson fields is expressed through
the path integral over quark fields:

exp(iSeff(σ, πk)) = N ′

∫

[dq̄][dq] exp
(

i

∫

d4x
√−g L̃

)

,

where

Seff(σ, πk) = −
∫

d4x
√−g

[

σ2 + π2
k

4G

]

+ S̃eff , (9)

N ′ is a normalization constant. The quark contribution to the effective action, i.e. the term S̃eff in (9), is given by:

exp(iS̃eff) = N ′

∫

[dq̄][dq] exp
(

i

∫

d4x
√−g q̄Dq

)

= det D. (10)

In (10), we have used the following notation

D = iγν∇ν + µγ0 + δµτ3γ
0 − σ −m− iγ5πkτk. (11)

Clearly, D is an operator in the coordinate, spinor and flavor spaces. Apart from this, it is proportional to the unit
operator 11c in the color space. Thus, it can be presented in the flavor⊗color space in the following matrix form:

D =

(

A , B
B̄ , Ā

)

f

⊗ 11c ≡ D ⊗ 11c, (12)

where operators A, Ā,B, B̄ act in the coordinate and spinor spaces only, and

A = iγν∇ν + (µ+ δµ)γ0 − σ −m− iγ5π3, B = iγ5(π1 − iπ2),

Ā = iγν∇ν + (µ− δµ)γ0 − σ −m+ iγ5π3, B̄ = iγ5(π1 + iπ2). (13)
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Due to the trivial color structure, it follows from (12) that

det D = (det D)
3
. (14)

Now, suppose that π3 = π2 = 0 and σ, π1 are quantities independent of coordinates 1. In what follows, we shall denote
the pion condensate π1 by ∆ for convenience. Then, using the general formula

det

(

A , B
B̄ , Ā

)

= det[−B̄B + B̄AB̄−1Ā] = det[ĀA− ĀBĀ−1B̄], (15)

we obtain

Seff(σ,∆) = −
∫

d4x
√−g

[

σ2 + ∆2

4G

]

− 3i ln detD ≡ −Ω(σ,∆;µ, δµ)

∫

d4x
√−g, (16)

where we have introduced the thermodynamic potential Ω(σ,∆;µ, δµ) of the system at zero temperature and

detD = det
{

∆2 + [−iγν∇ν − (µ+ δµ)γ0 − σ −m][iγν∇ν + (µ− δµ)γ0 − σ −m]
}

. (17)

III. THERMODYNAMIC POTENTIAL

A. General formalism

The line element in the static Einstein universe is defined by the following relation:

ds2 = gµν(x)dxµdxν ≡ dt2 − a2(dχ2 + sin2 χ(dθ2 + sin2 θdϕ2)), (18)

where a is the radius of the Einstein universe (this quantity is related to the scalar curvature, R = 6/a2); −∞ < t <∞,
0 ≤ χ ≤ π, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π. Clearly, γ0(x) in this case anticommutes with all γk(x) and commutes with all ∇ν ,
where ν = 0, 1, 2, 3 and k = 1, 2, 3. Moreover, ∇0 = ∂0. So, starting from (17), we have (ν = 0, 1, 2, 3; k, l = 1, 2, 3):

detD = det
{

∆2 + (γν∇ν)2 − i(µ+ δµ)γ0γν∇ν − i(µ− δµ)γν∇νγ
0 − µ2 + δµ2 + 2δµ(σ +m)γ0 + (σ +m)2

}

= det
{

∆2 + ∂2
0 − 2iµ∂0 − µ2 + γk∇kγ

l∇l + (σ +m)2 − 2δµ[iγ0γk∇k − (σ +m)γ0] + δµ2
}

. (19)

Let P̂0 ≡ i∂0, Ĥ = −iγ0γk∇k + (σ+m)γ0. It is evident that ĤĤ = γk∇kγ
l∇l + (σ+m)2. Hence, we have from (19)

detD = detÔ, where Ô = ∆2 − (P̂0 + µ)2 + (Ĥ − δµ)2. (20)

Evidently, Ĥ is an operator in the Hilbert space of functions, depending on the space coordinates ~x. As it is
well-known (see, e.g. [35, 36]), each of the eigenvalues ±El of this operator is dl-fold degenerate,

El =
√

ω2
l + (m+ σ)2, ωl =

1

a
(l +

3

2
), dl = 2(l + 1)(l + 2), l = 0, 1, 2 . . . . (21)

Thus, one can write

Ĥψlαη(~x) = ηElψlαη(~x),

∫

d3~x
√−gψlαη(~x)ψl′α′η′(~x) = δll′δαα′δηη′ , (22)

where the eigenfunctions ψlαη(~x) (α = 1, ..., dl; η = ±1) of the operator Ĥ are also known (see, e.g., [35, 36]), and
g = det gµν = −det gij(~x) (see (18)). Now, let us choose in the Hilbert space of functions a basis of the form
Ψlαηp0(t, ~x) ≡ e−ip0tψlαη(~x), where −∞ < p0 < ∞. Since each element Ψlαηp0 (t, ~x) of this basis is an eigenfunction

1 To justify this assumption, let us consider for simplicity the case m = 0. If the fields σ, πk do not depend on coordinates, then the
effective action is a function of the invariants σ2 + π2

3
and π2

1
+ π2

2
only (this fact is due to the symmetry of the model with respect to

the transformations (8)). Therefore, without loss of generality one can put π3 = π2 = 0.
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both of P̂0 and Ĥ, one can easily conclude that the operator Ô from (20) is diagonal in this basis, i.e. each Ψlαηp0(t, ~x)

is an eigenfunction of Ô. The corresponding eigenvalues Elηp0 of Ô have the following form:

Elηp0 = ∆2 − (p0 + µ)2 + (ηEl + δµ)2. (23)

It is clear from (23) that eigenvalues Elηp0 of the operator Ô do not depend on the quantum number α = 1, ..., dl,

being dl-fold degenerate. Taking into account in (16) the relations (20) and DetÔ = exp(Trln Ô), as well as the results

of Appendix A, where the quantity Trln Ô is calculated (see (A11)), one finds

Seff(σ,∆) +

∫

d4x
√−g

[

σ2 + ∆2

4G

]

= −3iTr ln Ô = −3iT
∑

lη

∫

dp0

2π
dl ln

[

∆2 − (p0 + µ)2 + (ηEl + δµ)2
]

. (24)

Here
∫

d4x
√−g ≡ T V , where T =

∫

dt stands for an infinite time interval and V =
∫

d3~x
√−g = 2π2a3 is the space

volume of the Einstein universe (the last relations are due to the fact that g = −det gij(~x) depends only on ~x). Now,
using the definition (16) of the thermodynamic potential (TDP) and summing in (24) over η = ±1, we have for the
zero temperature case

Ω(σ,∆;µ, δµ) =
σ2 + ∆2

4G
+

3i

V

∞
∑

l=0

∫

dp0

2π
dl

{

ln
[

∆2− (p0 +µ)2 +(El − δµ)2
]

+ln
[

∆2− (p0 +µ)2 +(El + δµ)2
]}

. (25)

To find the TDP Ω(σ,∆;µ, δµ, T ) in the case of nonzero temperature T , one should use the imaginary time technique,
where, after summation over Matsubara frequencies (see, e.g., [32, 37]), the following expression can be found

Ω(σ,∆;µ, δµ, T ) =
σ2 + ∆2

4G
− 3

V

∞
∑

l=0

dl

{

E
(+)
l + E

(−)
l

}

− 3T

V

∞
∑

l=0

dl

{

ln
[

1 + e−β(E
(+)
l

+µ)
]

+ ln
[

1 + e−β(E
(+)
l

−µ)
]}

− 3T

V

∞
∑

l=0

dl

{

ln
[

1 + e−β(E
(−)
l

+µ)
]

+ ln
[

1 + e−β(E
(−)
l

−µ)
]}

(26)

with E
(±)
l =

√

(El ± δµ)2 + ∆2 and β = 1/T . It is clear that Ω(σ,∆;µ, δµ, T ) is an even function with respect to
each of the transformations µ→ −µ or δµ→ −δµ. Thus, one can deal only with non-negative values of the chemical
potentials, µ ≥ 0, δµ ≥ 0.

From this moment on, we will consider only the case of nonzero isospin chemical potential δµ 6= 0, whereas the
baryon chemical potential is set equal to zero, µ = 0, since its presence is not of principle importance for us. So, at
µ = 0 two particular cases can be investigated on the basis of the TDP (26).

First, let us choose T = 0 and µ = 0, but δµ 6= 0. Then we obtain from (26) the expression:

Ω(σ,∆;µ = 0, δµ, T = 0) ≡ Ω(σ,∆; δµ) =
σ2 + ∆2

4G
− 3

V

∞
∑

l=0

dl

{

E
(+)
l + E

(−)
l

}

. (27)

Secondly, at T 6= 0, µ = 0, δµ 6= 0 we obtain:

Ω(σ,∆;µ = 0, δµ, T ) ≡ Ω(σ,∆; δµ, T ) =
σ2 + ∆2

4G
− 3

V

∞
∑

l=0

dl

{

E
(+)
l + E

(−)
l

}

− 6T

V

∞
∑

l=0

dl

{

ln
[

1 + e−βE
(+)
l

]

+ ln
[

1 + e−βE
(−)
l

]}

. (28)

Next, let us consider the limit of zero curvature or infinitely large radius of the universe. It is clear that the metric
(18) never coincides with that of the flat Minkowsky spacetime because these two spacetimes have different topologies.
However, in the limit a→ ∞ and R → 0 one can obtain from (28) the usual expression for the TDP in flat spacetime
(see, e.g., [14]) by the following substitution:

l

a
→ k, ωl → k, dl = 2(l + 1)(l + 2) → 2k2a2,

∑

l

→
∫

dl = a

∫

dk
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In this case, the TDP looks as follows:

Ω(σ,∆; δµ, T ) =
σ2 + ∆2

4G
− 6

∫

d3k

(2π)3

{

E
(+)
k + E

(−)
k + 2T ln[1 + e−βE

(+)
k ] + 2T ln[1 + e−βE

(−)
k ]

}

, (29)

where E
(±)
k =

√

(Ek ± δµ)2 + ∆2.
It should be noted that one more particular case, when T 6= 0, µ 6= 0, but δµ = 0, can easily be reduced to the

investigation of the one-flavored NJL model at T 6= 0, µ 6= 0 in the Einstein universe [31], and hence we shall not
consider it here.

B. Regularization

First of all, in order to normalize the TDP, we should subtract a corresponding constant from it, such that Ω(σ =
0,∆ = 0) = 0. The thermodynamic potential, normalized in this way, is still divergent at large l, and hence, we
should introduce a (soft) cutoff in the summation over l by means of the multiplier e−ωl/Λ [31, 32], where Λ is the
cutoff parameter 2.

For convenience, we shall multiply all dimensional quantities that enter the thermodynamic potential by the corre-
sponding power of Λ to make them dimensionless, i.e., Ω/Λ4, σ/Λ, ∆/Λ, Λ2G, Λ3V, R/Λ2, T/Λ, µ/Λ, δµ/Λ, ωl/Λ,
and denote them using the same letters as before: Ω, σ, ∆, G, V, R, T, µ, δµ, ωl. Then the regularized thermody-
namic potential is written as

Ωreg(σ,∆; δµ, T ) =
σ2 + ∆2

4G
− 3

V

∞
∑

l=0

e−ωldl

{

E
(+)
l + E

(−)
l

}

− 6T

V

∞
∑

l=0

e−ωldl

{

ln
[

1 + e−βE
(+)
l

]

+ ln
[

1 + e−βE
(−)
l

]}

. (30)

In the following Section, we shall perform a numerical calculation of the points of the global minimum of the finite
regularized thermodynamic potential Ωreg(σ,∆) − Ωreg(0, 0) (they should of course coincide with the minima of the
potential Ωreg(σ,∆)), and with the use of them, consider quark matter phase transitions in the gravitational field of
the Einstein universe.

IV. NUMERICAL CALCULATIONS

In this section, on the basis of the thermodynamic potentials (27)-(28), we will study numerically phase transitions
in quark matter and consider only the case of nonzero isospin chemical potential δµ 6= 0, whereas the baryon chemical
potential is set equal to zero, µ = 0. In order to obtain the values of condensates, one should find the global minimum
point (GMP) of the thermodynamic potentials over the variables σ, ∆ from the corresponding gap equations

∂Ωreg(σ,∆)

∂σ
= 0,

∂Ωreg(σ,∆)

∂∆
= 0.

Formally, there are four different expressions for the GMP: i) (σ = 0,∆ = 0), ii) (σ 6= 0,∆ = 0), iii) (σ = 0,∆ 6= 0),
iv) (σ 6= 0,∆ 6= 0). The first two GMPs correspond to the isotopically invariant phases of the model, whereas the
GMPs of the form iii) and iv) correspond to the phases, in which the ground state is no more UI3(1) invariant. In
these phases the pion condensation phenomenon occurs. For simplicity, we take for the numerical calculations of the
GMP the value of the coupling constant G = 1 (in our dimensionless choice of parameters).

2 In flat spacetime, the cutoff constant Λ can be specified according to the experimental results. However, in the case of a curved spacetime,
in order to fix the cutoff Λ, we need new theoretical/experimental inputs for chiral QCD in (strong) gravitational background fields,
concerning, for instance, an effective gluon mass, known values of the quark condensate or even experimentally measured characteristics
of a pion. Due to the lack of experimental knowledge, our aim is here to perform only a qualitative study of gravitational effects on the
quark and pion condensates by investigating the respective phase portraits of the NJL model. For this reason it is convenient to scale
the thermodynamic potential and all relevant quantities like condensates, curvature, chemical potential and temperature by the cutoff
Λ.
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A. Zero temperature

Let us first consider phase transitions at zero temperature, T = 0 and choose the current quark mass to be equal
to zero, m = 0. The thermodynamic potential in this case is described by formula (27).

The detailed investigation of the GMP properties vs external parameters R and δµ results in the phase portrait
shown in Fig. 1. For the points of symmetric phase 1, the GMP is at σ = 0 and ∆ = 0. In the phase 3, the minimum
is at σ = 0 and ∆ 6= 0, and this indicates that the isospin UI3(1) symmetry of the model is dynamically broken in
this phase. We note that at the same time the chiral UAI3(1) symmetry remains unbroken in this phase, since in the
GMP we have σ = 0, as it should be in the case of zero current quark mass, when ∆ 6= 0.

0 10 20 30 40
R

2

4

6

8

∆Μ

1
1

1

1

1

3

FIG. 1: The phase portrait at zero temperature T = 0 and m = 0. Number 1 denotes the symmetric phase and 3 denotes the
isospin symmetry breaking phase (the phase with the pion condensate ∆ 6= 0).
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FIG. 2: The behaviour of the pion condensate ∆. Left picture: T = 0, δµ = 4.5. Right picture: R = 15, T = 0.

As one can see from Fig. 1, the critical curve, which separates the phases 1 and 3, has an oscillating character.
This phenomenon is explained by the discreteness of the fermion energy levels (21) in compact space. Moreover,
as it is clearly seen from the curves in 2, the pion condensate ∆ vs R also oscillates in the phase 3. This effect
resembles the van Alphen-de Haas oscillations of different physical quantities in the magnetic field H , where fermion
levels are also discrete (the Landau levels) [38] (see also [39], where a similar influence of a magnetic field on the
oscillation behavior of the Compton scattering and photoproduction cross-sections was demonstrated). Indeed, the
corresponding magnetic oscillations of the critical curve in the µ-H phase portrait of dense cold quark matter with
four-fermion interactions were found in papers [16]. There, the existence of the standard van Alphen-de Haas magnetic
oscillations of some thermodynamical quantities, including magnetization, pressure and particle density of cold dense
quark matter was also demonstrated.
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The behavior of the pion condensate ∆ as a function of R at fixed δµ and as a function of δµ at fixed R is shown
in Fig. 2 (left and right pictures respectively).

The phase portrait at finite current quark mass, m 6= 0, is depicted in Fig. 3. In phase 2 the chiral symmetry is
now broken due to a finite value of the current quark mass, and the global minimum of TDP is at σ 6= 0 and ∆ = 0.
In the mixed phase 4 both condensates are nonzero, i.e. σ 6= 0 and ∆ 6= 0.

0 10 20 30 40
R

2

4

6

8

∆Μ

2
2

2

2

2

4

FIG. 3: The phase portrait at zero temperature, T = 0, and m = 0.01. Number 2 denotes the chiral symmetry breaking phase
with σ 6= 0, ∆ = 0, and 4 denotes the mixed phase with σ 6= 0 and ∆ 6= 0.

The behavior of the chiral condensate σ in the case of finite quark mass, m 6= 0, is shown in Fig. 4 as a function of
R at δµ = 4.5 (left picture) and as a function of δµ at R = 15 (right picture).
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0.008
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0.012

Σ

FIG. 4: Condensate σ at δµ = 4.5 (left picture) and R = 15 (right picture), m = 0.01

One can see oscillations of σ on both pictures, although they are rather strong in the left picture for the dependence
on R, while they are weakly seen in the high δµ tail of the curve in the right picture. One should note that the right
picture resembles, except for these oscillations, the corresponding curve in [11] (Fig. 1) for the flat case.

B. Finite temperature

Using formula (30) for the thermodynamic potential, we can also study the influence of finite temperature on phase
transitions. The phase portrait at T = 0.1 and zero current quark mass, m = 0, is shown in Fig. 5 in terms of R− δµ.
It is seen from this figure that growing temperature leads to a smoothing of oscillations of the phase curve.

For comparision, in Fig. 6, the phase portraits in the T − δµ and R− δµ planes (the latter now at another value of
temperature T = 0.4) are depicted. First of all, it is clear from Fig. 6 that the isospin symmetry is restored due to
the vanishing of the pion condensate both at high temperature and high curvature. The similarity between these two
plots leads to the conclusion that curvature and temperature effects play a similar role in the restoration of isospin
symmetry.
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FIG. 5: The phase portrait at T = 0.1 and m = 0. Number 1 denotes the symmetric phase and 3 denotes the isospin symmetry
breaking phase (the phase with the pion condensate ∆ 6= 0).

1 2 3 4 5
∆Μ

0.25

0.3

0.35

0.4

0.45

0.5

T

1 13

1 2 3 4
∆Μ

4

6

8

10

R

1 13

FIG. 6: The phase portraits at R = 4 (left picture) and at T = 0.4 (right picture), m = 0.

The phase portrait in Fig. 7 for R = 0 corresponds to the case of flat Minkowski spacetime. It looks very similar
to the one obtained, for instance, in [11] (see upper panel of their corresponding Fig. 12). Let us compare the phase
portraits at zero (Fig. 7) and finite curvature (Fig. 6, left picture). In the first case the pion condensation appears at
arbitrary small nonzero values of the isospin chemical potential, while in the second case the isospin symmetry becomes
dynamically broken only at some finite value of the chemical potential δµ. This phenomenon may be explained by
the existence of a gap in the quark spectrum (21), which is proportional to the inverse radius of the Einstein universe.
In this case the effect of curvature is similar to the effect of a nonzero current quark mass (for comparison see lower
panel of Fig. 12 in [11] and our Fig. 6).

V. CONCLUSIONS

In the framework of an extended Nambu–Jona-Lasinio model, we have studied the influence of a gravitational field on
pion condensation in isotopically asymmetric quark matter at finite temperature and isospin chemical potential. As a
particular model of a gravitational field configuration we have taken the static Einstein universe. This particular choice
enabled us to investigate phase transitions of the system with an exact consideration of the role of the gravitational
field in the formation of the quark and pion condensates and thus to demonstrate its influence on the phase portraits.
In particular, we have found that thermodynamic quantities such as quark and pion condensates as well as the
corresponding phase boundaries (critical curves) oscillate as functions of curvature. This oscillating behavior is
smoothed out with growing temperature. There exists also an interesting similarity between the behavior of phase
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FIG. 7: The phase portrait at R = 0 and m = 0.

portraits when considered as functions of curvature and as functions of finite temperature (compare Figs. 6). Moreover,
we have shown that for massless quarks and for some values of R the isospin symmetry becomes in curved spacetime
dynamically broken only at some finite value of the chemical potential δµ (look at Fig. 6 (left picture) for rather
small values of T ). This is contrary to the case of flat spacetime, where the pion condensation appears at arbitrary
small nonzero values of the isospin chemical potential (see Fig. 7). This effect resembles the pion condensation but
at nonzero bare quark mass and may be explained by the presence of a gap in the energy spectrum of quarks in the
gravitational field.

Finally, let us add some remarks on the possible role of quantum fluctuations of the collective fields and finite
size effects in our approach. In fact, since the volume of the space region modelled by the closed Einstein universe
adopted in this paper is limited, finite size effects could eventually change the character of phase transitions (see e.g.
discussions in [40, 41]). Eventually, this might even lead to particular situations, where no phase transition can occur.
However, as it is clear from physical considerations, the finite size in itself may not practically forbid the dynamical
symmetry breaking, if the characteristic length of the region of space occupied by the system is much greater than
the Compton wavelength of the excitation responsible for tunneling and restoration of symmetry (see, e.g., [40]). It
should be noted that our results, obtained with the use of the mean field approximation in the framework of the NJL
model are consistent with corresponding estimates of the role of quantum fluctuations (see Appendix B).

In conclusion, we emphasize that the results of this paper are evidently only of a qualitative nature. They do
not allow us to find an exact value of the critical radius, and hence, further studies with more realistic models of
gravitational fields should be undertaken.
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APPENDIX A: THE TRACE OF THE OPERATOR Ô (20)

In Section III we have introduced two operators, P̂0 and Ĥ, acting in the Hilbert space H of all quadratically
integrable functions f(t, ~x) defined on the spacetime manifold of the Einstein universe.

Now suppose that there is an abstract Hilbert space H of vectors |f〉. Let ~̂x and t̂ be the operators of the space
and time coordinates, correspondingly, defined on H. Moreover, let |t, ~x〉 ≡ |x〉 be the complete set, or basis, of

eigenvectors of ~̂x and t̂, i.e. ~̂x|x〉 = ~x|x〉, t̂|x〉 = t|x〉. The set |x〉 is usualy called the coordinate basis in H. Obviously,
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the completeness and normalization conditions for the coordinate basis |x〉 are valid:

∫

d4x
√−g|x〉〈x| = I, (A1)

〈x′|x〉 =
δ(x− x′)√−g , (A2)

where I is the unit operator in H and g = det gµν . Due to (A1), it is possible to expand any vector |f〉 ∈ H in terms of
the basis |x〉, namely |f〉 =

∫

d4x
√−g|x〉〈x|f〉. The quantity 〈x|f〉 is called x- (or coordinate) representation for the

vector |f〉. Identifying 〈x|f〉 with f(t, ~x), we see that the Hilbert space H of all quadratically integrable functions is
simply the coordinate representation of the above introduced abstract Hilbert space H. Furthermore, if in the Hilbert
space H there is an arbitrary operator â, then the matrix Â, whose matrix elements in the coordinate basis are just the
quantities 〈x′|â|x〉, is called the x- (or coordinate) representation of the operator â. Obviously, in order to define an

operator â in the abstract Hilbert space H, it is sufficient to define its matrix Â ≡ 〈x′|â|x〉, which acts in the Hilbert

space H of all quadratically integrable functions, in the coordinate basis. It is clear that TrÂ =
∫

d4x
√−g〈x|â|x〉.

Now, let us consider in H the two commuting operators p̂0 and ĥ such that in the x-representation they look like

P̂0 ≡ 〈x′|p̂0|x〉 and Ĥ ≡ 〈x′|ĥ|x〉, correspondingly (see section III). The operators P̂0 and Ĥ have a common set of
eigenfunctions Ψlαηp0 (t, ~x) defined in section III, from which it follows that

∫

d4x
√−gΨlαηp0(t, ~x)Ψ

∗

l′α′η′p′

0
(t, ~x) = 2πδ(p′0 − p0)δll′δαα′δηη′ . (A3)

The eigenfunctions Ψlαηp0(t, ~x) are the coordinates of the corresponding eigenvectors |lαηp0〉 ∈ H of the operators p̂0

and ĥ (recall, l = 0, ...∞;α = 1, .., dl ≡ 2(l+ 1)(l + 2); η = ±1;−∞ < p0 <∞):

|lαηp0〉 =

∫

d4x
√−g|x〉Ψlαηp0(t, ~x) ≡

∫

d4x
√−g|x〉〈x|lαηp0〉. (A4)

(Clearly, p̂0|lαηp0〉 = p0|lαηp0〉 and ĥ|lαηp0〉 = ηEl|lαηp0〉.) It follows from (A4) that Ψlαηp0(t, ~x) = 〈x|lαηp0〉.
Using this relation in the normalization condition (A3) and then integrating there over x with the help of (A1), we
obtain

〈l′α′η′p′0|lαηp0〉 = 2πδ(p′0 − p0)δll′δαα′δηη′ (A5)

which is the analogue of the normalization condition (A2). It is possible to show that the completness condition for
the basis |lαηp0〉 follows from (A5):

∑

lαη

∫

dp0

2π
|lαηp0〉〈lαηp0| = I. (A6)

Let us construct in H the following operator

ô = ∆2 − (p̂0 + µ)2 + (ĥ + δµ)2 (A7)

which is diagonal in the basis (A4), i.e. each vector |lαηp0〉 is its eigenvector with corresponding eigenvalue Elαηp0

(23). In the coordinate representation its matrix 〈x′|ô|x〉 coincides with the operator Ô (20). So,

TrÔ ≡
∫

d4x
√−g〈x|ô|x〉 =

∫

d4x
√−g

∑

lαη

∫

dp0

2π

∑

l′α′η′

∫

dp′0
2π

〈x|lαηp0〉〈lαηp0|ô|l′α′η′p′0〉〈l′α′η′p′0|x〉, (A8)

where the last equality was obtained by employing the completeness relation (A6). Now, by using in this formula the
eigenvalue condition ô|lαηp0〉 = Elαηp0 |lαηp0〉, the normalization condition (A5), and, finally, by performing in the
obtained expression the integration and summation over primed indices, we have

TrÔ =

∫

d4x
√−g

∑

lαη

∫

dp0

2π
Elαηp0〈x|lαηp0〉〈lαηp0|x〉 =

∫

d4x
√−g

∑

lαη

∫

dp0

2π
Elαηp0Ψlαηp0(t, ~x)Ψ

∗

lαηp0
(t, ~x). (A9)

Since in (A9) the quantities
√−g and Ψlαηp0(t, ~x)Ψ

∗
lαηp0

(t, ~x) ≡ψlαη(~x)ψlαη(~x) (the last relation is due to the notations

accepted in formula (22) and below) do not depend on the time coordinate, the expression (A9) is proportional to
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the infinite time interval T ≡
∫

dt. The remaining ~x-integration in (A9) gives simply unity due to the relation (22).
So we have

TrÔ = T
∑

lαη

∫

dp0

2π
Elαηp0 = T

∑

lη

∫

dp0

2π
dl

[

∆2 − (p0 + µ)2 + (ηEl + δµ)2
]

, (A10)

where the fact that each eigenvalue Elαηp0 is dl-fold degenerated is taken into account and the notations from (21)-(23)

are used. In a similar way it is possible to obtain the quantity Trln Ô:

Tr ln Ô = T
∑

lαη

∫

dp0

2π
ln Elαηp0 = T

∑

lη

∫

dp0

2π
dl ln

[

∆2 − (p0 + µ)2 + (ηEl + δµ)2
]

. (A11)

APPENDIX B: THE ROLE OF QUANTUM FLUCTUATIONS AND FINITE SIZE EFFECTS

It is well known that spontaneous symmetry breaking in low dimensional quantum field theories may become
impossible due to strong quantum fluctuations of fields. The same is also true for systems that occupy a limited
space volume. However, as it is clear from physical considerations, the finite size in itself may not practically forbid
the spontaneous symmetry breaking, if the characteristic length of the region of space occupied by the system is
much greater than the Compton wavelength of the excitation responsible for tunneling and restoration of symmetry.
(Indeed, one may recall here well known physical phenomena such as the superfluidity of Helium or superconductivity
of metals that are observed in samples of finite volume). This idea has been discussed for some scalar field theories in
the Einstein universe for instance, in [40, 41]. In this Appendix, we shall demonstrate that, under certain conditions,
dynamical symmetry breaking in NJL-type models is indeed possible in the closed Einstein universe. In particular,
we will show that, if the radius of the universe is large enough such that the fluctuations of quantum fields are
comparatively small, the symmetry breaking obtained in the mean field approximation is not forbidden.

For illustrations, let us confine to the analogous case of the chiral condensate and consider the simplified case of
the linearized Lagrangian (6) with µ = 0, δµ = 0,m = 0, πk = 0,

L̃ = q̄(iγν∇ν − σ)q − 1

4G
σ2,

and the corresponding partition function Z = eiSeff with

Seff(σ) = −
∫

d4x
√−g σ

2

4G
− iTr ln(iγν∇ν − σ). (B1)

Now, supposing that σ = σ0 + φ, where σ0 is the vacuum expectation value of the field σ and φ denotes its quantum
fluctuation, we obtain:

ln(D − φ) ≈ lnD −D−1φ− 1

2
(D−1φ)(D−1φ) − . . . ,

where D = iγν∇ν − σ0. Thus Z = Z0Zφ, where Z0 = exp iS0, S0 = −
∫

d4x
√−gV0, and

V0 =
σ2

0

4G
+ i

1
∫

d4x
√−gTr lnD (B2)

is the effective potential at σ = σ0. The contribution of quantum fluctuations up to the φ2-term to the effective action
Sφ is given by

Zφ ≡
∫

dφ exp(iSφ) =

∫

dφ exp

{

−i
∫

d4x
√−g 1

4G
(φ2 + 2σ0φ) − Tr(D−1φ+

1

2
(D−1φ)(D−1φ))

}

.

It is evident, that in the above expansion the term linear in φ corresponds to the so-called tadpole diagram with one
external φ-line and the term quadratic in φ corresponds to the “polarization operator” diagram of the φ field with
one fermion loop. From (B2) we can write the stationarity condition and find the gap equation, ∂V0/∂σ0 = 0,

σ0

2G

∫

d4x
√−g = iTrD−1, (B3)
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and the linear terms in φ, corresponding to the tadpole diagram, cancel out in Zφ. Thus, the contribution of
fluctuations to the field action is given by

Sφ = −
∫

d4x
√
−g φ

2

4G
+
i

2
Tr(D−1φ)(D−1φ). (B4)

Next, we shall calculate the contribution of fluctuations φ to the effective action, taking into account the quark loop in
the gravitational field. (Note that this corresponds to the integral (11) and Fig.1a in [1].) For our purpose of making
estimates of the role of fluctuations, it is sufficient to limit ourselves to the consideration of fluctuations depending
only on time. In this case, we can extract the necessary kinematical factor for the meson fluctuation field and then
integrate over the time-component of the loop momentum in the limit of vanishing external momenta. Finally, after
going to the basis for the Dirac equation in the Einstein universe (see (20)–(22)) we obtain a sum over fermion loop
quantum numbers l instead of an integration over momenta of free quarks made in [1]. The sum is divergent and we
regularize it by the cut off Λ. In this way we obtain the effective action

Sφ = −
∫

d4x
√−g

[

φ2

4G
+

3

4π2a3

∞
∑

l=0

e−ωl/Λ2(l + 1)(l + 2)

(

−φ
2

El
+

4σ2
0φ

2 − (∂tφ)2

4E3
l

)

]

, (B5)

where El and ωl are given in (21). The summation over l in the first term in parenthesis in the above equation cancels
out by the term φ2/4G, due to the stationarity condition (B3)

1 =
3G

π2a3

∞
∑

l=0

e−ωl/Λ2(l+ 1)(l + 2)
1

El
. (B6)

After this we obtain

Sφ =

∫

dt
3

2

∞
∑

l=0

e−ωl/Λ2(l+ 1)(l + 2)
1

E3
l

(

1

4
φ̇2 − σ2

0φ
2

)

,

or Sφ =
∫

dtLφ with the Lagrange function

Lφ =
1

2

(

φ̇2 − 4σ2
0φ

2
)

VZ−1, (B7)

where V =
∫

d3x
√−g = 2π2a3 is the space volume, and the renormalization Z-factor is defined as

Z−1 =
3

4V

∞
∑

l=0

e−ωl/Λ2(l+ 1)(l + 2)
1

(ω2
l + σ2

0)
3/2

. (B8)

For comparision, let us consider the limiting case of flat space which is reached by the replacements

∑

l

→
∫

dl, (l + 1)(l + 2) → ~p2a2

in (B8). Then the Z-factor takes the form of the integral in the Euclidean spacetime

Z−1 = 12

∫

d4p

(2π)4
1

(p2
4 + ε2p)

2
,

with εp being the quark energy. This expression evidently corresponds to the similar formula for the Z-factor in the flat

space case considered in [1]. Next, let us perform the field renormalization φ = Z 1
2φr in (B7). Quantum fluctuations

of the boson field near the ground state σ0 can now be estimated, if we consider the renormalized expression (B7) as
the Lagrange function for a harmonic oscillator (here, we follow the idea of [40] 3) with the mass m and frequency ω,
formally given here by the relations

m = V , ω2 = 4σ2
0 ≡M2.

3 In our case of the NJL model, the consideration of the quark loop diagram is essential (see [1]). This differs from Ref. [40], where the
φ4

−model of a self-interacting scalar field was considered and the scalar loop contribution to the fluctuation Lagrangian was calculated.
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Then we can estimate the quantum fluctuations as

〈φ2〉 ≈ 1

mω
=

1

V2σ0
=

1

VM ,

where M is the mass of the composite σ-meson. Thus, we obtain

σ2
0

〈φ2〉 ≈ a3σ3
0 . (B9)

The estimate (B9) gives a criterion for the role of quantum fluctuations for a system with finite volume. Clearly,
quantum fluctuations can be considered negligible, if σ2

0 ≫ 〈φ2〉. This is in agreement with the physical requirement
that quantum fluctuations should be negligible if aσ0 ≫ 1, i.e., if the radius of the universe is much greater than the
Compton wavelength λ = 1

M = 1
2σ0

of the σ-meson (quarks) (see also [40]) 4.
The above estimates are certainly of a qualitative nature, and hence they do not allow us to find an exact value

of a critical radius such that symmetry breaking for lower values of the curvature radius of the Einstein universe is
forbidden.
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