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Using the Cornwall-Jackiw-Tomboulis effective action ΓðSÞ for composite operators (S is the full
fermion propagator), the phase structure of the massless (2þ 1)-dimensional Thirring model with four-
component spinors is investigated in the Hartree-Fock (HF) approximation. In this case both ΓðSÞ and its
stationary (or HF) equation for the full fermion propagator S are calculated in the first order of the bare
coupling constant G. We have shown that there exists a well-defined dependence of G≡ GðΛÞ on the
cutoff parameter Λ under which the HF equation is renormalized. In general, it has two sets, (i) and (ii), of
solutions for the fermion propagator corresponding to dynamical appearance of different mass terms in the
model. In the case of set (i) the mass terms are Hermitian, but the solutions from the set (ii) correspond to a
dynamical generation of the non-Hermitian mass terms, i.e., to a spontaneous non-Hermiticity of the
Thirring model. Despite this, the mass spectrum of the quasiparticle excitations of all non-Hermitian
ground states is real. In addition, among these non-Hermitian phases there are both PT symmetrical and
nonsymmetrical phases. Moreover, in contrast with previous investigations of this effect in other models,
we have observed the spontaneous non-Hermiticity phenomenon also in the massive (2þ 1)-dimensional
Thirring model.
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I. INTRODUCTION

For a long time, it was believed that to describe
quantum systems it is necessary to use theories with
Hermitian Hamiltonians (or Lagrangians), since in this
case the energy spectrum is real. However, in recent
decades it has become clear that there are situations,
especially in open physical systems interacting with the
environment, that can be effectively considered in terms of
non-Hermitian Hamiltonians. In particular, non-Hermitian
methods are used to describe processes in atomic,
molecular and optical physics, mesoscopic and nuclear
physics, to describe the properties of quark-gluon plasma
and systems with dissipation, etc. (For a more detailed
description of the scientific areas in which non-Hermitian
approaches are used, see, for example, the recent papers
[1,2].) Moreover, it was argued that if non-Hermitian
theories additionally have the spacetime reflection

symmetry PT , then its energy spectrum is real [3,4],
i.e., the Hermiticity of the Hamiltonian is only a sufficient,
but far from necessary, condition for the reality of the
energy spectrum of the system. This assertion is con-
firmed in quantum mechanics and in scalar field theories,
in which the non-Hermiticity together with the PT
symmetry leads to a real mass spectrum [5,6].
In fact, non-Hermitian methods can also be used in the

study of various fermionic systems, e.g., in condensed matter
physics, as well as when considering the quark-gluon plasma
when it is in the steady-stable thermodynamically non-
equilibrium regime in heavy-ion collisions, etc. In these
cases there are more opportunities for obtaining a real mass
spectrum of quasiparticles. On the one hand, indeed, as the
considerations of some (1þ 1)- and (3þ 1)-dimensional
(D) and non-Hermitian field theory models with four-
fermion interaction show, the PT symmetry together with
non-Hermiticity leads to a real spectrum of particle masses
[7–9]. On the other hand, in the same paper [9] other non-
Hermitian and anti-PT -symmetric extensions of the four-
fermion models are also presented, in which, nevertheless, a
real spectrum of fermion masses is also generated, i.e., in fact
PT symmetry of the model is not a necessary, but rather
sufficient, condition for real fermion masses to exist. Thus,
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the relationship between the phenomena of non-Hermiticity,
PT symmetry and the reality of the energy spectrum in any
quantum system remains a far from solved problem and
deserves further study. Moreover, one more feature of the
non-Hermiticity phenomenon should be noted, which was
observed recently just within the framework of the (3þ 1)-D
Nambu–Jona-Lasinio (NJL) [10–12] and (2þ 1)-D Gross-
Neveu (GN) [13] models with four-fermion interactions.
Namely, in these massless models the non-Hermiticity can
arise spontaneously [14,15]. (Quite recently, it was noted in
Ref. [16] that, perhaps, the phenomenon of spontaneous
non-Hermiticity occurs also in some models of Yukawa
type.) It means that (i) initial Lagrangians of the massless
NJL and GN models are taken to be Hermitian and PT
symmetric, (ii) but, as it was proved in Refs. [14,15], there
exist non-Hermitian ground states of these systems. In other
words, elementary excitations (with real masses) over these
ground states possess a non-Hermitian dynamics that can be
described effectively in terms of non-Hermitian Lagrangians,
in which non-Hermiticity arises spontaneously either due to
Yukawa-type terms (as in the NJL model [14]) or due to non-
Hermitian mass terms of the Fermi fields [as in the case of
the (2þ 1)-D GN model [15]]. It is also interesting to note
that if the initial Hermitian Lagrangian contains a nonzero
bare mass term, then the phenomenon of spontaneous non-
Hermiticity is absent in the above-mentioned NJL and GN
models.
In the present paper, we continue to study the features of

the phenomenon of spontaneous non-Hermiticity, but this
time in the framework of the (2þ 1)-D Thirring model in
which fermions are four-component spinors. We show that,
in contrast to the results obtained in Refs. [14,15], in the
(2þ 1)-D Thirring model a more rich set of non-Hermitian
phases can be generated spontaneously, both in the mass-
less and massive variants of the model.
In this connection, it is necessary to note that over the

past few decades much attention has been paid to the
investigation of (2þ 1)-D field-theory models, which can
be used to predict and study the condensed matter physics
phenomena of planar nature such as quantum Hall effect,
high-temperature superconductivity, low-energy graphene
physics, etc. To a fairly large extent, these phenomena
are usually considered in the framework of models with a
four-fermion interaction. Among them is the Gross-Neveu
model [17–26], the Thirring model [27–39], etc. One of the
reasons is that in the above-mentioned (2þ 1)-D models
the spontaneous symmetry breaking occurs dynamically,
i.e., nonperturbatively and without taking into account
additional scalar Higgs bosons. Moreover, despite the
perturbative nonrenormalizability of these models, in the
framework of nonperturbative approaches such as the large-
N technique, etc., they are renormalizable [26,28]. Just
using the 1=N approach, spontaneous symmetry breaking
and the associated effect of dynamical generation of the
fermion mass were investigated in these (2þ 1)-D models

with four-fermion interaction. It should also be noted that
other nonperturbative approaches, such as the optimized
expansion technique [40], Gaussian variational methods
[30,41], etc., predict qualitatively the same properties of the
above-mentioned (2þ 1)-D models as the 1=N expansion.
However, in the recent papers [38,39,42], the so-called

Hartree-Fock (HF) approach was used in order to inves-
tigate the possibility of dynamical fermion mass generation
in three-dimensional GN and Thirring models.1 The
essence of the HF method consists, first, in the using of
the Cornwall-Jackiw-Tomboulis (CJT) effective action for
composite operators ΓðSÞ [46] in field theory models (here
S is the full fermion propagator satisfying the stationary
equation δΓ=δS ¼ 0), and, second, that ΓðSÞ is considered
in the first order in the coupling constant. As a result, in the
framework of the models with four-fermion interaction, the
stationary equation takes the form of the well-known
Hartree-Fock equation for fermion mass operator [7,12];
wherein, it turned out that in the region of large N the HF
method predicts qualitatively the same properties of the
(2þ 1)-D GN and Thirring models as the leading order of
the nonperturbative 1=N-expansion method, widely used to
study these models. But in the region of small N, where
leading order of the 1=N approach is not applicable, the HF
method predicts the existence of other nontrivial phases of
the three-dimensional GN and Thirring models. In addition,
the use of this research method made it possible to detect
spontaneous non-Hermiticity in the (2þ 1)-D GN model
[15]. Here we go further and study in the framework of the
HF approach to the (2þ 1)-D Thirring model the possibil-
ity of its spontaneous non-Hermiticity. Namely, we show
that there can exist a non-Hermitian ground state of the
model whose quasiparticle excitations have a real mass
spectrum.
The paper is organized as follows. Section II A presents

the N-flavor massless (2þ 1)-dimensional Thirring model
constructed from four-component spinors. Here its invari-
ance with respect to continuous Uð2NÞ transformations as
well as under two spatial Pk and two time T l reflections
(k, l ¼ 1, 2) is established. The question of how different
fermion-antifermion structures (possible massive terms of
the model Lagrangian) are transformed under the influence
of different PkT l is clarified in it. In Sec. II B the CJT
effective action ΓðSÞ of the composite bilocal and bifer-
mion operator Ψ̄ðxÞΨðyÞ is considered up to a first order
in the bare coupling constant G (it is the so-called

1It is also worth mentioning that the possibility of the dynamical
appearance of the fermion mass in some non-Hermitian quantum
field theory models has been investigated in Refs. [2,43–45].
Namely, in the first of these papers, the problem is considered
within the framework of the 1=N expansion in the (3þ 1)-D NJL
model (with a complex coupling constant), while in the remaining
papers, for this purpose, the approach of the Dyson-Schwinger
equation was used in non-Hermitian Yukawa-type models with an
additional four-fermion interaction term.
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Hartree-Fock approximation), which is actually the func-
tional of the full fermionic propagator Sðx; yÞ. In real
situations, the propagator is a translation invariant solution
of the corresponding stationary HF equation of the obtained
CJT effective action. In Sec. III we show that for a some
well-defined behavior of the coupling constant GðΛÞ vs Λ,
there exists a set of different renormalized, i.e., without
ultraviolet divergences, solutions of the HF equation for the
propagator. Each of them corresponds to some phase in
which a Hermitian fermion mass term arises dynamically.
Section IV proves that HF equation has, in addition, a set of
so-called non-Hermitian solutions. Each of them corre-
sponds to a phase in which a non-Hermitian fermion mass
term arises dynamically, and the massless Thirring model
spontaneously becomes non-Hermitian. In this case, how-
ever, the mass spectrum of quasiparticle excitations of each
of the ground states of these (non-Hermitian) phases is real.
Finally, in Sec. V we show that the spontaneous non-
Hermiticity of the (2þ 1)-D Thirring model can appear not
only in the chiral limit, but also in the case when there is a
nonzero (Hermitian) bare Haldane mass term.

II. (2 + 1)-DIMENSIONAL THIRRING MODEL
AND HARTREE-FOCK APPROACH

A. Massless model, its symmetries, etc

The Lagrangian of the massless and N-flavored
(2þ 1)-D Thirring model under consideration has the
following form (see, e.g., in [31,33]):

L ¼ Ψ̄kγ
νi∂νΨk −

G
2N

ðΨ̄kγ
μΨkÞðΨ̄lγμΨlÞ; ð1Þ

where for each k ¼ 1;…; N the field Ψk ≡Ψkðt; x; yÞ is a
(reducible) four-component Dirac spinor [its spinor indices
are omitted in Eq. (1)], γν (ν ¼ 0, 1, 2) are 4 × 4 matrices
acting in this four-dimensional spinor space (the algebra
of these γ matrices and their particular representation used

in the present paper is given in Appendix A, where the
matrices γ3, γ5 and τ ¼ −iγ3γ5 are also introduced), and the
summation over repeated flavor k, l and Lorentz μ, ν
indices is assumed in Eq. (1) and below. The bare coupling
constant G has a dimension of ½mass�−1.
The set of all four-component spinor fields Ψk

(k ¼ 1;…; N) can be considered as a fundamental multiplet
of the UðNÞ flavor group, so the invariance of the
Lagrangian (1) with respect to this group is obvious.
However, it is not so obvious that in fact the continuous
symmetry group of the (2þ 1)-D Thirring model (1) is
wider and is Uð2NÞ. This is easy to establish if we rewrite
the expression (1) in terms of two-component spinors.
Namely, for each fixed k ¼ 1;…; N let us introduce
the following structure of a four-component spinor,
ΨT

k ¼ ðψT
2k−1;ψ

T
2kÞ, where the symbol T denotes the trans-

position operation, and ψ2k−1 and ψ2k are two-component
spinors. Then we have

L0 ≡ Ψ̄kγ
νi∂νΨk ¼ ψ̄1γ̃

νi∂νψ1 þ ψ̄2γ̃
νi∂νψ2 þ � � �

þ ψ̄2N γ̃
νi∂νψ2N;

Ψ̄kγ
νΨk ¼ ψ̄1γ̃

νψ1 þ ψ̄2γ̃
νψ2 þ � � � þ ψ̄2N γ̃

νψ2N;

ð2Þ

where γ̃ν are 2 × 2 matrices (see Appendix A). Assuming
formally that the set of all two-component spinors ψ2k−1
and ψ2k (k ¼ 1;…; N) is transformed by a fundamental
representation of the Uð2NÞ group, it is easy to see that
both the structures (2) and the entire Lagrangian (1) are
invariant under this group. Notice that sometimes the
continuous Uð2NÞ is called chiral symmetry group of
the Thirring Lagrangian (1) [35]. The reason is that the
Uð2NÞ group contains two chiral subgroups, Uð1Þγ5 and
Uð1Þγ3 , such that

Uð1Þγ5∶ Ψk → expðiγ5αÞΨk; Ψ̄k → Ψ̄k expðiγ5αÞ; k ¼ 1;…; N;

Uð1Þγ3∶ Ψk → expðiγ3α̃ÞΨk; Ψ̄k → Ψ̄k expðiγ3α̃Þ; k ¼ 1;…; N: ð3Þ

In addition, the Thirring Lagrangian (1) is also invariant
under several discrete transformations such as space parity
P, time reversal T and PT , whose action on four-
component Fermi fields Ψkðt; x; yÞ in (2þ 1)-D spacetime
should now be considered.
In (2þ 1) dimensions the space reflection, or parity,

transformation P is defined by ðt; x; yÞ!P ðt;−x; yÞ.2

To find the transformation of a four-component spinor
field ΨkðxÞ (k ¼ 1;…; N) under P, we postulate that
the Lagrangian L0 ≡ Ψ̄kðxÞDΨkðxÞ of the free massless
spinor fields Ψk, where D ¼ iγ0∂0 þ iγ1∂1 þ iγ2∂2,
remains intact under space reflection P. Hence [below,
for the sake of brevity we denote by x and x0 the set of
coordinates ðt; x; yÞ and ðt;−x; yÞ, respectively; moreover,
to simplify the formulas, almost everywhere in this section
we omit the flavor index k of the spinor fields, the
summation over which, however, is implied in all bifermion
structures],

2In (2þ 1) spacetime dimensions, parity corresponds to
inverting only one spatial axis [17,47], since the inversion of
both axes is equivalent to rotating the entire space by π angle.
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L0 ¼ PL0P−1 ¼ ΨPðx0ÞD0ΨPðx0Þ; ð4Þ

and

D0 ¼ PDP−1 ¼ iγ0∂0 − iγ1∂1 þ iγ2∂2; ΨPðx0Þ ¼ PΨðxÞP−1; ΨPðx0Þ ¼ PΨ̄ðxÞP−1: ð5Þ

It follows from Eqs. (4) and (5) that L0 is invariant under the action of parity operation only whenP is equal to one of theP5

or P3 transformations, where

P5∶ ΨðxÞ → P5ΨðxÞP−1
5 ≡ ΨP5ðx0Þ ¼ γ5γ1ΨðxÞ; Ψ̄ðxÞ → P5Ψ̄ðxÞP−1

5 ≡ΨP5ðx0Þ ¼ Ψ̄ðxÞγ5γ1;
P3∶ ΨðxÞ → P3ΨðxÞP−1

3 ≡ ΨP3ðx0Þ ¼ γ3γ1ΨðxÞ; Ψ̄ðxÞ → P3Ψ̄ðxÞP−1
3 ≡ΨP3ðx0Þ ¼ Ψ̄ðxÞγ3γ1: ð6Þ

Moreover, it is easy to conclude that the Lagrangian (1) as a whole is also invariant under the action of each of the
transformations P3 and P5. In addition, using Eq. (6) one can find how some Hermitian bispinors are transformed under the
action of P5,

Ψ̄ðxÞΨðxÞ⟶P5 Ψ̄ðxÞΨðxÞ; Ψ̄ðxÞiγ5ΨðxÞ⟶P5 − Ψ̄ðxÞiγ5ΨðxÞ;
Ψ̄ðxÞτΨðxÞ⟶P5 − Ψ̄ðxÞτΨðxÞ; Ψ̄ðxÞiγ3ΨðxÞ⟶P5 Ψ̄ðxÞiγ3ΨðxÞ: ð7Þ

But the transformations of these bispinor combinations under the action of P3 look like

Ψ̄ðxÞΨðxÞ⟶P3 Ψ̄ðxÞΨðxÞ; Ψ̄ðxÞiγ5ΨðxÞ⟶P3 Ψ̄ðxÞiγ5ΨðxÞ;
Ψ̄ðxÞτΨðxÞ⟶P3 Ψ̄ðxÞτΨðxÞ; Ψ̄ðxÞiγ3ΨðxÞ⟶P3 − Ψ̄ðxÞiγ3ΨðxÞ: ð8Þ

Now, let us consider the time reversal T in the framework of the (2þ 1)-D Thirring model (1). In the (2þ 1)-dimensional

spacetime it is defined as ðt; x; yÞ⟶T ð−t; x; yÞ. To determine how a four-component spinor field Ψ is transformed under
this operation in this case, we also assume from the very beginning (as in the case of spatial reflectionP) that the Lagrangian
L0 of free massless fermion fields Ψ remains invariant with respect to T , i.e., L0 ¼ T L0T −1, where [now, for the sake of
brevity we denote in this case by x and x0 the set of coordinates ðt; x; yÞ and ð−t; x; yÞ, respectively]

T L0T −1 ¼ ΨT ðx0ÞD0ΨT ðx0Þ; ΨT ðx0Þ ¼ T ΨðxÞT −1; ΨT ðx0Þ ¼ T Ψ̄ðxÞT −1; ð9Þ

and in this case D0 ¼ T DT −1. In the following, it is very important to take into account that time-reversal operation T
(i) changes the sign of the time coordinate, t → −t, and (ii) it is an antilinear or antiunitary one, which means that its action
on any complex number or matrix C transforms it into the complex conjugate C�, i.e., T CT −1 ¼ C� (for details, see, e.g.,
Refs. [4,48,49]). Taking into account these (i) and (ii) properties of the T transformation, we have

D0 ¼ iγ0�∂0 − iγ1�∂1 − iγ2�∂2 ¼ iγ0∂0 þ iγ1∂1 − iγ2∂2: ð10Þ

In the last equality we have used the relations γ0� ¼ γ0, γ1� ¼ −γ1 and γ2� ¼ γ2 (see Appendix A). Now, it is rather evident
from Eqs. (9) and (10) that L0 is invariant under the action of time-reversal T operation only when it is equal to one of the
T 5 or T 3 transformations, where

T 5∶ ΨðxÞ → T 5ΨðxÞT −1
5 ≡ΨT 5ðx0Þ ¼ γ5γ2ΨðxÞ; Ψ̄ðxÞ → T 5Ψ̄ðxÞT −1

5 ≡ΨT 5ðx0Þ ¼ Ψ̄ðxÞγ5γ2;
T 3∶ ΨðxÞ → T 3ΨðxÞT −1

3 ≡ΨT 5ðx0Þ ¼ γ3γ2ΨðxÞ; Ψ̄ðxÞ → T 3Ψ̄ðxÞT −1
3 ≡ΨT 3ðx0Þ ¼ Ψ̄ðxÞγ3γ2: ð11Þ

Using Eq. (11), it is easy to verify that not only L0, but also the Lagrangian (1) are invariant under both T 5 and T 3

transformations. Thus, there are two different time-inversion transformations T 5 and T 3, under which the massless
(2þ 1)-D Thirring model is invariant. It is easy to obtain the following transformations of the above-mentioned Hermitian
bispinors under T 5:
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Ψ̄ðxÞΨðxÞ⟶T 5 Ψ̄ðxÞΨðxÞ; Ψ̄ðxÞiγ3ΨðxÞ⟶T 5 − Ψ̄ðxÞiγ3ΨðxÞ;
Ψ̄ðxÞiγ5ΨðxÞ⟶T 5 − Ψ̄ðxÞiγ5ΨðxÞ; Ψ̄ðxÞτΨðxÞ⟶T 5 − Ψ̄ðxÞτΨðxÞ: ð12Þ

But under T 3 they are transformed as

Ψ̄ðxÞΨðxÞ⟶T 3 Ψ̄ðxÞΨðxÞ; Ψ̄ðxÞiγ3ΨðxÞ⟶T 3 Ψ̄ðxÞiγ3ΨðxÞ;
Ψ̄ðxÞiγ5ΨðxÞ⟶T 3 Ψ̄ðxÞiγ5ΨðxÞ; Ψ̄ðxÞτΨðxÞ⟶T 3 − Ψ̄ðxÞτΨðxÞ: ð13Þ

Since the Thirring Lagrangian (1) is invariant with respect
to each of the transformations P5, P3, T 5 and T 3, there
exist four PT transformations under which the model (1) is
also invariant. They are P5T 5, P5T 3, P3T 5 and P3T 3.
Using the relations (7), (8) and (12), (13), one can easily
find the transformations of the above-mentioned Hermitian
bispinors under these PkT l (k, l ¼ 3, 5) transformations
(see first four rows in Table I). In addition, the same Table I
shows the action of all discrete PkT l operators on some
anti-Hermitian bispinors (under the action of the Hermitian
conjugation, they change their sign to the opposite).
Due to the symmetry of the model (1) with respect to the

above-mentioned continuous and discrete transformations,
different mass terms are prohibited to appear in this
Lagrangian perturbatively. Indeed, the most popular mass
term has the formmDΨ̄kΨk (for it we use the notation Dirac
mass term), but it breaks, as it follows from Eq. (3), both
Uð1Þγ5 and Uð1Þγ3 chiral symmetries of the model,
although this mass term is Pk and T l (k, l ¼ 3, 5) even.
There is another well-known expression for fermion mass
that is often discussed in the literature. This is a mass term
of the form mHΨ̄kτΨk (recall, here the 4 × 4 matrix τ is
defined in Appendix A) and sometimes it is referred to as
the Haldane mass term (see, e.g., Ref. [23]).3 But the
nonzero Haldane mass term is not invariant under the parity
P5, although it is invariant under chiral symmetries (3) and
P3. There exist two other, chiral, mass terms, im3Ψ̄kγ

3Ψk

and im5Ψ̄kγ
5Ψk, the dynamical generation of which we are

also going to study here. The first one breaks Uð1Þγ3
symmetry [but it is invariant underUð1Þγ5 andP5], whereas
the second mass term is not invariant under Uð1Þγ5 and P5

transformations [but it is Uð1Þγ3 and P3 symmetrical]. So
the Dirac mD, Haldane mH and m3, m5 masses can not
appear perturbatively in the chirally Uð1Þγ5, Uð1Þγ3 , parity
P5, P3, etc. invariant massless Lagrangian (1).
Nevertheless, as can be seen from the analysis of the

phase structure of the model (1) carried out within the HF
approach (see in the text below), all of the above-mentioned

masses may be dynamically, i.e., nonperturbatively,
induced in the (2þ 1)-D Thirring model. This means that
there exists such a behavior of the bare coupling constant
G≡GðΛÞ vs the cutoff regularization parameter Λ that a
phase with one or another finite nonzero fermion mass can
be dynamically generated in the model.

B. Hartree-Fock approach

Let us define ZðKÞ, the generating functional of the
Green’s functions of bilocal fermion-antifermion
composite operators

P
N
k¼1 Ψ̄

α
kðxÞΨkβðyÞ in the framework

of a (2þ 1)-D Thirring model (1) (the corresponding
technique for theories with four-fermion interaction is
elaborated in detail, e.g., in Ref. [53]):

ZðKÞ≡ expðiNWðKÞÞ ¼
Z

DΨ̄kDΨk exp

�
i

�
IðΨ̄;ΨÞ

þ
Z

d3xd3yΨ̄α
kðxÞKβ

αðx; yÞΨkβðyÞ
��

; ð14Þ

where α, β ¼ 1, 2, 3, 4 are spinor indices, Kβ
αðx; yÞ is a

bilocal source of the fermion bilinear composite field
Ψ̄α

kðxÞΨkβðyÞ (recall that in all expressions the summation
over repeated indices is assumed).4 Moreover, IðΨ̄;ΨÞ ¼R
Ld3x, where L is the Lagrangian (1) of the (2þ 1)-

dimensional Thirring model under consideration. Hence,

IðΨ̄;ΨÞ ¼
Z

d3xd3yΨ̄α
kðxÞDβ

αðx; yÞΨkβðyÞ þ IintðΨ̄α
kΨkβÞ;

Dβ
αðx; yÞ ¼ ðγνÞβαi∂νδ3ðx− yÞ;

Iint ¼ −
G
2N

Z
d3xðΨ̄kγ

μΨkÞðΨ̄lγμΨlÞ

¼ −
G
2N

Z
d3xd3td3ud3vδ3ðx− tÞδ3ðt− uÞ

× δ3ðu− vÞΨ̄α
kðxÞðγμÞβαΨkβðtÞΨ̄ρ

l ðuÞðγμÞξρΨlξðvÞ:
ð15Þ

3The appearance of the Haldane mass term is related to the
parity anomaly in (2þ 1) dimensions, to generation of the Chern-
Simons topological mass of gauge fields [50,51], as well as to the
integer quantum Hall effect in planar condensed matter systems
without external magnetic field, etc. [52].

4We denote a matrix element of an arbitrary matrix (operator)
Â acting in the four-dimensional spinor space by the symbol Aα

β ,
where the upper (low) index αðβ) is the column (row) number of
the matrix Â. In particular, the matrix elements of any γμ matrix is
denoted by ðγμÞαβ.
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Note that in Eq. (15) and similar expressions below, δ3ðx − yÞ denotes the three-dimensional Dirac delta function. There is an
alternative expression for ZðKÞ ¼ expðiNWðKÞÞ,

expðiNWðKÞÞ ¼ exp

�
iIint

�
−i

δ

δK

��Z
DΨ̄kDΨk exp

�
i
Z

d3xd3yΨ̄kðxÞ½Dðx; yÞ þ Kðx; yÞ�ΨkðyÞ
�

¼ exp

�
iIint

�
−i

δ

δK

��
½detðDðx; yÞ þ Kðx; yÞÞ�N

¼ exp

�
iIint

�
−i

δ

δK

��
exp½NTr lnðDðx; yÞ þ Kðx; yÞÞ�; ð16Þ

where instead of each bilinear form Ψ̄α
kðsÞΨkβðtÞ appearing

in Iint of Eq. (15) we use a variational derivative
−iδ=δKβ

αðs; tÞ. Moreover, the Tr operation in Eq. (16)
means the trace both over spacetime and spinor coordi-
nates. The effective action (or CJT effective action) of the
composite bilocal and bispinor operator Ψ̄α

kðxÞΨkβðyÞ is
defined as a functional ΓðSÞ of the full fermion propagator
Sαβðx; yÞ by a Legendre transformation of the functional
WðKÞ entering in Eqs. (14) and (16),

ΓðSÞ ¼ WðKÞ −
Z

d3xd3ySαβðx; yÞKβ
αðy; xÞ; ð17Þ

where

Sαβðx; yÞ ¼
δWðKÞ
δKβ

αðy; xÞ
: ð18Þ

Taking into account the relation (14), it is clear that at
Kðx; yÞ ¼ 0 the quantity Sðx; yÞ is the full fermion propa-
gator of the Thirring model (1). Hence, in order to construct
the CJT effective action ΓðSÞ of Eq. (17), it is necessary
to solve Eq. (18) with respect to K and then to use the
obtained expression for K (it is a functional of S) in
Eq. (17). It follows from the definitions (17) and (18) that

δΓðSÞ
δSαβðx; yÞ

¼
Z

d3ud3v
δWðKÞ

δKμ
νðu; vÞ

δKμ
νðu; vÞ

δSαβðx; yÞ
− Kβ

αðy; xÞ

−
Z

d3ud3vSνμðv; uÞ
δKμ

νðu; vÞ
δSαβðx; yÞ

: ð19Þ

[In Eq. (19) and below, the Greek letters α, β, μ, ν, etc., also
denote the spinor indices, i.e., α;…ν;… ¼ 1;…; 4.] Now,
due to the relation (18), it is easy to see that the first term in
Eq. (19) cancels there the last term, so

δΓðSÞ
δSαβðx; yÞ

¼ −Kβ
αðy; xÞ: ð20Þ

Hence, in the true Thirring model (1), in which bilocal
sources Kβ

αðy; xÞ are zero, the full fermion propagator is a
solution of the following stationary equation:

δΓðSÞ
δSαβðx; yÞ

¼ 0: ð21Þ

Note that in the nonperturbative CJT approach the
stationary/gap equation (21) for fermion propagator
Sβαðx; yÞ is indeed a Schwinger–Dyson equation [53].
Further, in order to simplify the calculations and obtain
specific information about the phase structure of the model,
we calculate the effective action (17) up to a first order in
the coupling G.
In the literature, such an approach to effective action

ΓðSÞ of any model, including field theories with four-
fermion interaction, is usually called the Hartree-Fock (HF)
approximation [38,39,46] (a more detailed justification for
this name is given at the end of this section).
In the first order in coupling constantG, we have (detailed

calculations are given in Appendix B of the paper [39])

ΓðSÞ ¼ −iTr lnð−iS−1Þ þ
Z

d3xd3ySαβðx; yÞDβ
αðy; xÞ

−
G
2

Z
d3x tr½γρSðx; xÞ�tr½γρSðx; xÞ�

þ G
2N

Z
d3x tr½γρSðx; xÞγρSðx; xÞ�: ð22Þ

Notice that in Eq. (22) the symbol tr means the trace of an
operator over spinor indices only, but Tr is the trace both
over spacetime coordinates and spinor indices. Moreover,
there the operator Dðx; yÞ is introduced in Eq. (15). The
stationary, or Schwinger–Dyson, Eq. (21) for the CJT
effective action (22) looks like

−i½S−1�βαðx; yÞ −Dβ
αðx; yÞ ¼ −GðγρÞβαtr½γρSðx; yÞ�δ3ðx − yÞ

þ G
N
½γρSðx; yÞγρ�βαδ3ðx − yÞ:

ð23Þ

Now suppose that Sðx; yÞ is a translationary invariant
operator. Then
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Sβαðx; yÞ≡ SβαðzÞ ¼
Z

d3p
ð2πÞ3 S

β
αðpÞe−ipz;

SβαðpÞ ¼
Z

d3zSβαðzÞeipz;

ðS−1Þβαðx; yÞ≡ ðS−1ÞβαðzÞ ¼
Z

d3p
ð2πÞ3 ðS

−1ÞβαðpÞe−ipz; ð24Þ

where z ¼ x − y and SβαðpÞ is a Fourier transformation of
SβαðzÞ. After Fourier transformation, Eq. (23) takes the form

−iðS−1ÞβαðpÞ − ðp̂Þβα ¼ −GðγρÞβα
Z

d3q
ð2πÞ3 tr½γρSðqÞ�

þ G
N

Z
d3q
ð2πÞ3 ½γ

ρS̄ðqÞγρ�βα; ð25Þ

where p̂ ¼ pνγ
ν. It is clear from Eq. (25) that in the

framework of the four-fermion model (1) the Schwinger-
Dyson equation for fermion propagator S̄ðpÞ reads in the
first order in G like the Hartree-Fock equation for its self-
energy operator ΣðpÞ (the last quantity is nothing but the
expression on the left side of this equation). In particular, the
first term on the right-hand side of Eq. (25) is the so-called
Hartree contribution, whereas the last term there is the Fock
contribution to the fermion self-energy (for details, see, e.g.,
Sec. 4.3.1 in Ref. [12] or Sec. II C in Ref. [7]). Also for this
reason, the stationary equation (25) will be called the HF
equation.

Finally note that both the CJT (or HF) effective action
(22) and its stationary HF equations (23)–(25), in which G
is a bare coupling constant, contain ultraviolet (UV)
divergences and need to be renormalized. In the next
sections, using a rather general ansatz for fermion propa-
gator S̄ðpÞ, we find the corresponding mode of the coupling
constant G behavior vs cutoff parameter Λ, such that there
occurs a renormalization of the gap HF equation (25), and it
is possible to obtain its finite solution in the limit Λ → ∞.

III. POSSIBILITY FOR DYNAMICAL
GENERATION OF HERMITIAN MASS TERMS

In the present section, we study in the HF approximation
the possibility of the dynamic appearance of the Hermitian
mass term MH in the model (1). It has the form

MH ¼ Ψ̄kðmHτ þmD þ im5γ
5 þ im3γ

3ÞΨk: ð26Þ

It means that we should find such a solution S̄ðpÞ of the
stationary HF equation (25) that

S−1ðpÞ ¼ iðp̂þmHτ þmD þ im5γ
5 þ im3γ

3Þ; ð27Þ

where mD, mH, m3 and m5 are finite unknown real
quantities. Using any program of analytical calculations,
it is easy to obtain the propagator S̄ðpÞ which is indeed a
matrix inverse to the 4 × 4 matrix (27),

S̄ðpÞ ¼ −i
detðpÞ

�
aðpÞI; bðpÞI
b̄ðpÞI; āðpÞI

�
þ i
detðpÞ

� ½ðΣ −mHÞ2 − p2�p̃; 2mHðm5 þ im3Þp̃
−2mHðm5 − im3Þp̃; −½ðΣ −mHÞ2 − p2�p̃

�
; ð28Þ

where I is a unit 2 × 2 matrix, while p̃≡ pνγ̃
ν is also a 2 × 2 matrix (the corresponding γ̃ matrices are defined in

Appendix A), and p2 ¼ p2
0 − p2

1 − p2
2. Moreover, we use in Eq. (28) the following notations:

aðpÞ ¼ mDðΣ2 −m2
H − p2Þ −mHðΣ2 −m2

H þ p2Þ; bðpÞ ¼ −ðm5 þ im3ÞðΣ2 −m2
H − p2Þ;

āðpÞ ¼ mDðΣ2 −m2
H − p2Þ þmHðΣ2 −m2

H þ p2Þ; b̄ðpÞ ¼ −ð−m5 þ im3ÞðΣ2 −m2
H − p2Þ;

detðpÞ ¼ ðp2 − ðmH þ ΣÞ2Þðp2 − ðmH − ΣÞ2Þ; Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þm2
3 þm2

5

q
: ð29Þ

[Notice that detðpÞ is indeed a determinant of the 4 × 4
matrix (27).] We would like to emphasize that the first term
on the right-hand side of the equality (28) is an even
function vs each momentum pμ. In contrast, the second
term there is an odd function with respect to each
momentum pμ. Therefore, after integration over the
momenta, it will not contribute at all to the right side of

the HF equation (25) [however, its contribution to the
expression (22) for the CJT effective action in the HF
approximation is nonzero]. Taking into account this
circumstance, after substituting the (27)–(29) expressions
into the HF equation (25), we obtain for the quantities mD,
mH, m3 and m5 the following unrenormalized system of
gap equations:

SPONTANEOUS NON-HERMITICITY IN THE (2þ 1)- … PHYS. REV. D 106, 125010 (2022)

125010-7



mH ¼ 3iG
2N

Z
d3p
ð2πÞ3

�
ΣþmH

p2 − ðΣþmHÞ2
−

Σ −mH

p2 − ðΣ −mHÞ2
�
;

mD ¼ 3iG
2N

mD

Σ

Z
d3p
ð2πÞ3

�
ΣþmH

p2 − ðΣþmHÞ2
þ Σ −mH

p2 − ðΣ −mHÞ2
�
;

m5 ¼
3iG
2N

m5

Σ

Z
d3p
ð2πÞ3

�
ΣþmH

p2 − ðΣþmHÞ2
þ Σ −mH

p2 − ðΣ −mHÞ2
�
;

m3 ¼
3iG
2N

m3

Σ

Z
d3p
ð2πÞ3

�
ΣþmH

p2 − ðΣþmHÞ2
þ Σ −mH

p2 − ðΣ −mHÞ2
�
:

ð30Þ

Note that three-dimensional integrals in Eq. (30) are UV divergent and must be regularized. Performing in these integrals a
Wick rotation, p0 → ip3, and then using in the obtained three-dimensional Euclidean integration space the spherical
coordinate system, p3 ¼ p cos θ; p1 ¼ p sin θ cosϕ; p2 ¼ p sin θ sinϕ, we have (after integration over angles,
0 ≤ θ ≤ π; 0 ≤ ϕ ≤ 2π, and cutting off the region of integration of the variable p, 0 ≤ p ≤ Λ) the following regularized
gap system:

mH ¼ 3G
2N

Z
Λ

0

p2dp
2π2

�
ΣþmH

p2 þ ðΣþmHÞ2
−

Σ −mH

p2 þ ðΣ −mHÞ2
�
;

mD ¼ 3G
2N

mD

Σ

Z
Λ

0

p2dp
2π2

�
ΣþmH

p2 þ ðΣþmHÞ2
þ Σ −mH

p2 þ ðΣ −mHÞ2
�
;

m5 ¼
3G
2N

m5

Σ

Z
Λ

0

p2dp
2π2

�
ΣþmH

p2 þ ðΣþmHÞ2
þ Σ −mH

p2 þ ðΣ −mHÞ2
�
;

m3 ¼
3G
2N

m3

Σ

Z
Λ

0

p2dp
2π2

�
ΣþmH

p2 þ ðΣþmHÞ2
þ Σ −mH

p2 þ ðΣ −mHÞ2
�
;

ð31Þ

where Λ is a cutoff parameter. Since

Z
Λ

0

p2

p2 þM2
dp ¼ Λ −

π

2
jMj þMO

�
M
Λ

�
; ð32Þ

the system of gap regularized equations (31) can be reduced to the following form:

mH

A
¼ 2mHΛ −

π

2
½ðΣþmHÞjΣþmHj − ðΣ −mHÞjΣ −mHj� þmHO

	mH

Λ



;

mD

A
¼ 2mDΛ −

π

2

mD

Σ
½ðΣþmHÞjΣþmHj þ ðΣ −mHÞjΣ −mHj� þmDO

	mD

Λ



;

m3

A
¼ 2m3Λ −

π

2

m3

Σ
½ðΣþmHÞjΣþmHj þ ðΣ −mHÞjΣ −mHj� þm3O

	m3

Λ



;

m5

A
¼ 2m5Λ −

π

2

m5

Σ
½ðΣþmHÞjΣþmHj þ ðΣ −mHÞjΣ −mHj� þm5O

	m5

Λ



; ð33Þ

where A ¼ 3G
4Nπ2

. To remove the UV divergences from
Eq. (33), we suppose that the bare quantity A≡ AðΛÞ
has the following asymptotic behavior at Λ → ∞:

1

AðΛÞ ¼ 2Λþ π

2
gþ gO

�
g
Λ

�
; ð34Þ

where g is a finite Λ-independent and renormalization
group invariant parameter with dimension of [mass]. It is
clear from Eq. (34) that at sufficiently high values of Λ

G≡GðΛÞ ¼ 2π2N
3Λ

−
π3Ng
6Λ2

þ � � � : ð35Þ
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In this case, at Λ → ∞ the system of stationary HF
equations (33) takes the following renormalized form:

gmH þðΣþmHÞjΣþmHj− ðΣ−mHÞjΣ−mHj ¼ 0;

mD

�
gþ 1

Σ
½ðΣþmHÞjΣþmHjþ ðΣ−mHÞjΣ−mHj�

�
¼ 0;

m3

�
gþ 1

Σ
½ðΣþmHÞjΣþmHjþ ðΣ−mHÞjΣ−mHj�

�
¼ 0;

m5

�
gþ 1

Σ
½ðΣþmHÞjΣþmHjþ ðΣ−mHÞjΣ−mHj�

�
¼ 0:

ð36Þ

In the most general case, the system of gap HF equa-
tions (36) has several solutions. To determine which of
them is the most preferable, it is necessary to attract the so-
called CJT effective potential VðSÞ (in statistical physics,
this quantity is called free energy), which is constructed on
the basis of the CJT effective action by the following
relation [46]:

VðSÞ
Z

d3x≡ −ΓðSÞjtransl-inv Sðx;yÞ: ð37Þ

To find CJT effective potential VðSÞ in the Hartree-Fock
approximation, we should use in Eq. (37) the expressions
(22) and (28) for CJT effective action ΓðSÞ and for the
full fermion propagator Sðx; yÞ, respectively. But in this
case the obtained expression for VðSÞ contains UV diver-
gences. However, they are eliminated if bare coupling G is
constrained by the relation (35). As a result, in the HF
approach we have for the CJT effective potential VðSÞ≡
VðmH;mD;m3; m5Þ the following renormalized expression
(more detailed calculations are presented in Appendix B):

VðmH;mD;m3; m5Þ≡ VðmH;ΣÞ

¼ 1

12π
ð3gΣ2 þ 3gm2

H þ 2jΣþmHj3 þ 2jΣ −mHj3Þ; ð38Þ

where Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þm2
3 þm2

5

q
≥ 0, and g is some finite and

renormalization group invariant quantity defined by
Eq. (34) [notice that the expression (38) is valid up to
unessential mass-independent infinite constant]. Note in
addition that the gap equations (36) are also the stationary
equations for the CJT effective potential (38). The global
minimum point (GMP) of the function VðmH;mD;m3; m5Þ
determines the values of fermion masses mH;mD;m3; m5

which are generated dynamically in the massless Thirring
model when coupling constant G is constrained by the
condition (35).
Let us consider the GMP of the function VðmH;ΣÞ (38)

and its behavior vs g. First, note that this function is
symmetric under the transformation mH → −mH. So, for
simplicity, it is sufficient to look for its GMP only in the

region Σ; mH ≥ 0. Second, it is evident that at g ≥ 0 the
GMP of VðmH;ΣÞ lies at the point ðmH ¼ 0;Σ ¼ 0Þ, which
means that no fermion mass terms are generated in this
region, and all model symmetries discussed in Sec. II A
remain intact.
In contrast, if g < 0 then effective potential (38) as a

function of Σ and mH has two GMPs that are degenerate.
One of them has the form ðmH ¼ −g=2;Σ ¼ 0Þ, another
looks like ðmH ¼ 0;Σ ¼ −g=2Þ. The value of the function
VðmH;ΣÞ at these points is the same and equal to
1

48π g
3 < 0. The first GMP corresponds to the fact that only

the Haldane mass term dynamically arises in the model (the
other masses are equal to zero), and a phase occurs in
which, e.g., parity P5 is spontaneously broken down,
although continuous Uð2NÞ chiral symmetry, including
Uð1Þγ5 and Uð1Þγ3 chiral subgroups (3), remains intact. In
addition to these, there are other discrete symmetries of the
model that are also spontaneously broken in this phase, or
remain unbroken (for details, see Sec. II A). In the second
GMP of the function (38) only the zero value of the
Haldane mass term is fixed unambiguously, while the
values of other masses mD;m3; m5, which arise dynami-
cally, are constrained by the condition

Σ2 ≡m2
D þm2

5 þm2
3 ¼ g2=4: ð39Þ

Note that in each of the phases with mH ¼ 0 and other
masses satisfying the condition (39), at least one of the
chiral symmetries (3) is spontaneously broken. So, each
phase from this variety is qualitatively different from the
phase with mH ¼ −g=2 and mD ¼ m5 ¼ m3 ¼ 0 in which
chiral symmetries are not broken. However, it should be
noted that there is much in common between all these
dynamically arising at g < 0 phases. Namely, the free
energy density of their ground states is the same and is
equal to 1

48π g
3, i.e., they are degenerate and can appear

spontaneously in the massless (2þ 1)-D Thirring model (1)
on the same footing. As a result, in the space, filled with
one of these degenerated phases, bubbles of the other
phases can be created, i.e., one can observe in space the
mixture (or coexistence) of these phases. The mass MF of
the simplest quasiparticle excitations of their ground states,
i.e., the pole of the fermion propagator (28), is also the
same and MF ¼ jgj=2, etc.
In this regard, we would like to note that the HF

approach has recently been used to study the generalized
(2þ 1)-D Thirring model containing both vector-vector
and scalar-scalar interaction channels [39]. In this work, the
possibility of dynamical generation of the Hermitian mass
term of the form (26) was studied, but only with nonzero
Dirac and Haldane mass terms. The results of this study,
reduced to the case of the true Thirring model, turned out to
be qualitatively the same as in the present investigation,
which uses a more general mass term (26) with four
different mass parameters. It means that in order to obtain
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the properties of the Hermitian ground state of the true
(2þ 1)-D Thirring model, it is sufficient to use an ansatz
(26) only with mD and mH masses. However (as it will be
shown in the next section), in order to detect the phe-
nomenon of spontaneous non-Hermiticity of the Thirring
model, it is necessary to involve additional mass terms.
Finally, let us look at the phase structure of the model

from the renormalization group point of view. For this
we introduce dimensionless bare coupling constant λ≡
λðΛÞ ¼ ΛGðΛÞ. This quantity is associated with the so-

called Callan-Symanzik function βðλÞ ¼ Λ ∂λðΛÞ
∂Λ . Using the

relation (34), one can get

βðλÞ ¼ λ

λ0
ðλ0 − λÞ; ð40Þ

where λ0 ¼ 2Nπ2

3
is the nontrivial zero of the function βðλÞ.

The behavior of this function in the neighborhood of λ0
indicates that λ0 is an UV-stable point of the model. This
means that in the continuous limit (that is, at Λ → ∞) λðΛÞ
tends to the UV-stable point λ0. [This feature of the
dimensionless coupling constant λðΛÞ can also be seen
directly from Eq. (35).] Then, it is well known that for
values of λ > λ0 a phase with broken symmetry is usually
located, and for λ < λ0 a phase with unbroken symmetry
occurs. These most general properties of the UV-stable
point of any model are confirmed by the above calculations
made in the framework of the massless (2þ 1)-D Thirring
model. Indeed, it is easy to see from the relation (35) that

λ − λ0 ¼ −
π3Ng
6Λ

þ � � � : ð41Þ

Therefore, if g > 0, then, as it follows from Eq. (41), we
have λ < λ0. But when g > 0, as is clear from the previous
discussion, the original symmetry of the model remains
intact, i.e., the symmetrical phase of the model is located at
λ < λ0. But when g < 0, any of the fermionic mass terms
(mD;mH;…) can dynamically appear, and hence the
spontaneous breaking of the original symmetry is realized.
In this case, as can be seen from Eq. (41), we have λ > λ0.
Two conclusions follow from this. (i) Within the HF

approach to the (2þ 1)-D massless Thirring model built
from reducible four-component spinors, fermion mass
generation is possible for any finite value of N. (ii) It is
obvious that λ0 → ∞ when N → ∞. Hence, in this case (at
N → ∞), for any finite values of λ it is impossible to detect
in the model (since λ < λ0 ¼ ∞) the dynamical generation
of different mass terms within the leading order of the 1=N
approximation. The similar property has been predicted in
some papers earlier, e.g., in Refs. [29,30].

IV. DYNAMICAL GENERATION OF THE
NON-HERMITIAN MASS TERM

In the present section, we study in the HF approximation
the possibility of the existence of such a solution S̄ðpÞ of
the HF equation (25), which would correspond to dynami-
cal generation in the model of a non-Hermitian mass term
MNH of a rather general form,

MNH ¼ Ψ̄kðmHτ þ η ·mD þ ϑ · im5γ
5 þ κ · im3γ

3ÞΨk;

ð42Þ

where each of the multipliers η, ϑ, κ is either 1 or i and all
mass parameters mH;mD;m5; m3 are real quantities. Note
that the Haldane contribution to MNH, i.e., the term
mHΨ̄kτΨk, is a Hermitian,5 but the contributions from
other mass terms, Dirac or chiral ones, to the expression
(42) are not necessarily Hermitian. However, if all factors
η, ϑ, κ in Eq. (42) are equal to 1, then MNH as a whole
becomes Hermitian [see Eq. (26)], and its generation
within the framework of the HF approach was considered
in Sec. III. Therefore, here we assume that in Eq. (42) at
least one of the factors η, ϑ, κ is equal to i. In this case we
must look for the solution S̄ðpÞ of the gap HF equation (25)
such that

S−1ðpÞ ¼ iðp̂þmHτ þ η ·mD þ ϑ · im5γ
5 þ κ · im3γ

3Þ:
ð43Þ

As for S̄ðpÞ itself, in this case, one can use for it the
expressions (28) and (29) in which it is necessary to
perform replacements

mD → ηmD; m3 → κm3; m5 → ϑm5; ð44Þ

and, as a consequence, to use there instead of Σ the
expression Σ̃, i.e.,

Σ → Σ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2m2

D þ ϑ2m2
5 þ κ2m2

3

q
: ð45Þ

Since we are looking for non-Hermitian phases with a real
spectrum of its quasiparticles [note, the energy spectrum of
quasiparticles is defined by the singularity of the fermion
propagator S̄ðpÞ], it must be supposed that η, ϑ, κ and
mD;m5; m3 are such that

η2m2
D þ ϑ2m2

5 þ κ2m2
3 ≥ 0: ð46Þ

5The non-Hermiticity of the Haldane mass term means thatmH
is not real. But in this case, as it is clear from Eq. (29), the
spectrum of quasiparticles becomes complex, and the ground
state of the system becomes unstable. So, throughout a paper we
do not consider such a possibility.
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Performing in Eq. (30) the same changes as in (44) and
(45), it is easy to obtain the unrenormalized HF equations
for mH;mD;m5 and m3 in the case of non-Hermitian mass
term (42). The UV divergences of these equations can be
removed by the same behavior of the coupling constant G
vs Λ as in Eqs. (34) or (35). Hence, in the non-Hermitian
case the renormalized HF equations for mass parameters
mH;mD;… look like Eq. (36), in which Σ should be
replaced by Σ̃ according to Eq. (45). Of course, these
equations are the stationary (or gap) equations of the HF
effective potential VNHðmH;mD;m5; m3Þ in the non-
Hermitian case. It can be obtained on the basis of a
general expression (37) in the same way as the HF effective
potential (38) in the Hermitian case (see Appendix B) and
has the form

VNHðmH;mD;m5; m3Þ≡ VNHðmH; Σ̃Þ

¼ 1

12π
ð3gΣ̃2 þ 3gm2

H þ 2jΣ̃þmHj3 þ 2jΣ̃ −mHj3Þ; ð47Þ

where Σ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2m2

D þ ϑ2m2
5 þ κ2m2

3

q
≥ 0 and g is defined

in Eq. (34). The GMP of this function over the variables
mH;mD;m5 andm3 defines the massive components of the
non-Hermitian mass term (42) that can appear dynamically
in the model and, as a result, the properties of the
corresponding non-Hermitian ground state of the model.

A. The case g > 0: Gapless spontaneous
non-Hermiticity of the (2 + 1)-dimensional

Thirring model

In this case the effective potential (47), considered as a
function of mH and Σ̃, has a trivial GMP of the form
ðmH ¼ 0; Σ̃ ¼ 0Þ. However, we must look at VNHðmH; Σ̃Þ,
where Σ̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2m2

D þ ϑ2m2
5 þ κ2m2

3

q
, as a composite func-

tion of mD;m3; m5 variables, constrained by the relation
η2m2

D þ ϑ2m2
5 þ κ2m2

3 ≥ 0. It is evident that in the
Hermitian case, i.e., when η ¼ ϑ ¼ κ ¼ 1, there is no
dynamical mass generation in the model, since the GMP
of its effective potential (47) looks like mH ¼ mD ¼
m5 ¼ m3 ¼ 0, where we have VNHð0; 0; 0; 0Þ ¼ 0. There
are no other points ðmH;mD;m5; m3Þ, different from this
trivial point, at which this relation would hold.
In contrast, if one or two of the factors η, ϑ, κ are equal to

i, then in the four-dimensional ðmH;mD;m5; m3Þ space
there are nontrivial two-dimensional manifolds, on which
the effective potential VNH (47) vanishes, i.e., reaches its
lowest value. Namely, in this case for each fixed set η;…
the corresponding two-dimensional manifold is defined by
two equations,mH ¼ 0 and Σ̃ ¼ 0. Each nontrivial point of
this manifold is also a GMP of the effective potential (47)
which defines the dynamically generated non-Hermitian
mass term of the model.
For example, if η ¼ ϑ ¼ 1; κ ¼ i and g > 0, then a non-

Hermitian mass term Ψ̄kðmD þ im5γ
5 −m3γ

3ÞΨk with

mH ¼ 0 can be generated, in which nonzero masses satisfy
the relation Σ̃ ¼ 0, i.e., m2

D þm2
5 ¼ m2

3. This mass term
corresponds to the GMP of the effective potential (47)
where it is equal to zero. It is clear from Table I that in
the phase with such a mass term the discrete P5T 5 and
P3T 3 symmetries remain intact, but other PkT l sym-
metries are spontaneously broken. Moreover, it follows
from Eq. (43) that the corresponding fermion propagator
S̄ðpÞ looks like

S̄ðpÞ ¼ −iðp̂þmD þ iγ5m5 − γ3m3Þ=p2: ð48Þ
The relation (48) means that quasiparticle excitations of
this phase are massless and, hence, their energy spectrum
has zero excitation energy (or zero gap). In the literature,
a phase in which quasiparticles are gapless is usually
called gapless (for example, there are gapless color
superconductivity [54] and gapless charged pion con-
densation [55], etc.). By analogy, this non-Hermitian
phase of the (2þ 1)-D Thirring model can also be called
gapless.
In addition to the above phase, at g > 0 five other non-

Hermitian gapless phases (corresponding to other η, ϑ, κ
sets) may appear spontaneously in the model. They are
characterized by dynamical appearance of one of the
following non-Hermitian mass terms (with mH ¼ 0):

ðiÞ Ψ̄kðmD −m5γ
5 þ im3γ

3ÞΨk where m2
D þm2

3 ¼ m2
5;

ðiiÞ Ψ̄kðimD þ im5γ
5 þ im3γ

3ÞΨk where m2
5 þm2

3 ¼ m2
D;

ðiiiÞ Ψ̄kðimD −m5γ
5 þ im3γ

3ÞΨk where m2
D þm2

5 ¼ m2
3;

ðivÞ Ψ̄kðimD þ im5γ
5 −m3γ

3ÞΨk where m2
D þm2

3 ¼ m2
5;

ðvÞ Ψ̄kðmD −m5γ
5 −m3γ

3ÞΨk where m2
5 þm2

3 ¼ m2
D:

ð49Þ

With respect to the transformations P5T 3 and P3T 5 the
mass term (i) is even, while (iv) is odd. The mass term

TABLE I. Behavior of various Hermitian (from rows 1 through
4) and anti-Hermitian (from rows 5 through 8) bispinor structures
under different PkT l transformations (k, l ¼ 3, 5). Here “Even”
means that a bispinor remains intact, “Odd”—that a bispinor
changes sign to the opposite under the action of PkT l.

Bispinorsntransformations P5T 5 P5T 3 P3T 5 P3T 3

Ψ̄ðxÞΨðxÞ Even Even Even Even
Ψ̄ðxÞiγ5ΨðxÞ Even Odd Odd Even
Ψ̄ðxÞiγ3ΨðxÞ Odd Even Even Odd
Ψ̄ðxÞτΨðxÞ Even Even Odd Odd

iΨ̄ðxÞΨðxÞ Odd Odd Odd Odd
Ψ̄ðxÞγ5ΨðxÞ Odd Even Even Odd
Ψ̄ðxÞγ3ΨðxÞ Even Odd Odd Even
Ψ̄ðxÞiτΨðxÞ Odd Odd Even Even
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(iii) is P5T 5 and P3T 3 odd, whereas the mass terms (ii)
and (v) are neither symmetric nor antisymmetric under
any of the PkT l discrete transformations (see Table I). Note
that all of these six gapless non-Hermitian phases are
degenerated, since the energy density of the ground state in
each of these phases is the same and equals zero. Moreover,
at g > 0 the Hermitian symmetric phase, in which all
masses mD;mH;… are equal to zero (see Sec. III), also has
a zero free energy density and, as a result, can appear in the
system on an equal footing with all of these gapless non-
Hermitian phases.

B. The case g < 0

Just as discussed in Sec. III, in this case the HF effective
potential (47) as a function ofmH and Σ̃ has two degenerated
GMPs, ðmH ¼ −g=2; Σ̃ ¼ 0Þ and ðmH ¼ 0; Σ̃ ¼ −g=2Þ.
Excluding again from a consideration the possibility of
dynamical generation of the Hermitian mass term, i.e., the
case when η ¼ ϑ ¼ κ ¼ 1, we see that the first GMP
corresponds to the possibility of spontaneous generation
in the Thirring model of six different non-Hermitian phases
corresponding to the following dynamically generated non-
Hermitian mass terms:

ðiÞ Ψ̄kðmHτ þmD þ im5γ
5 −m3γ

3ÞΨk with m2
D þm2

5 ¼ m2
3;

ðiiÞ Ψ̄kðmHτ þmD −m5γ
5 þ im3γ

3ÞΨk with m2
D þm2

3 ¼ m2
5;

ðiiiÞ Ψ̄kðmHτ þ imD −m5γ
5 þ im3γ

3ÞΨk with m2
D þm2

5 ¼ m2
3;

ðivÞ Ψ̄kðmHτ þ imD þ im5γ
5 −m3γ

3ÞΨk with m2
D þm2

3 ¼ m2
5;

ðvÞ Ψ̄kðmHτ þ imD þ im5γ
5 þ im3γ

3ÞΨk with m2
5 þm2

3 ¼ m2
D;

ðviÞ Ψ̄kðmHτ þmD −m5γ
5 −m3γ

3ÞΨk with m2
5 þm2

3 ¼ m2
D; ð50Þ

where mH ¼ −g=2 and Σ̃ ¼ 0. Each of the non-Hermitian
mass terms (i)–(vi) of Eq. (50) is assigned to a well-defined
set of parameters η, ϑ, κ. For example, the mass term
(i) corresponds to η ¼ ϑ ¼ 1; κ ¼ i, the mass term (ii) cor-
responds to η ¼ κ ¼ 1; ϑ ¼ i, etc. It follows from Table I
that the mass term (i) of Eq. (50) and the corresponding
non-Hermitian phase are P5T 5 invariant. Moreover, the
phase with mass term (ii) is P5T 3 symmetric. It is

interesting to note that the mass terms (iii) and (iv) are,
respectively, P3T 3 and P3T 5 odd, but the rest mass terms,
(v) and (vi), have no PkT l parity.
The second GMP of the HF effective potential

VNHðmH; Σ̃Þ (47), i.e., the point ðmH ¼ 0; Σ̃ ¼ −g=2Þ,
corresponds to the other six non-Hermitian phases of the
model with the following dynamically generated non-
Hermitian mass terms:

ðiÞ Ψ̄kðmD þ im5γ
5 −m3γ

3ÞΨk with m2
D þm2

5 −m2
3 ¼ g2=4;

ðiiÞ Ψ̄kðmD −m5γ
5 þ im3γ

3ÞΨk with m2
D þm2

3 −m2
5 ¼ g2=4;

ðiiiÞ Ψ̄kðimD þ im5γ
5 þ im3γ

3ÞΨk with m2
5 þm2

3 −m2
D ¼ g2=4;

ðivÞ Ψ̄kðimD −m5γ
5 þ im3γ

3ÞΨk with m2
3 −m2

D −m2
5 ¼ g2=4;

ðvÞ Ψ̄kðimD þ im5γ
5 −m3γ

3ÞΨk with m2
5 −m2

D −m2
3 ¼ g2=4;

ðviÞ Ψ̄kðmD −m5γ
5 −m3γ

3ÞΨk with m2
D −m2

5 −m2
3 ¼ g2=4: ð51Þ

In Eq. (51), the non-Hermitian phase corresponding to the
mass term (i) is symmetric under P5T 5 and P3T 3, whereas
the phase with dynamically arising mass term (ii) is
invariant under P5T 3 and P3T 5 transformations. In con-
trast, in any of the non-Hermitian phases with one of the
(iii)–(vi) mass terms, all discrete symmetries discussed in
Sec. II A are spontaneously broken. However, it is worth
clarifying that the mass term (iv) is P5T 5 and P3T 3 odd,
while the mass term (v) is P5T 3 and P3T 5 odd.
It is easy to see that at g < 0 the fermion propagator S̄ðpÞ

of Eq. (43) in each of the non-Hermitian phases,

corresponding to (non-Hermitian) mass terms of
Eqs. (50) and (51), describes the quasiparticles with the
same real massMF ¼ jgj=2. [Note that it is also the same as
the mass of quasiparticle excitations of all Hermitian phases
which can dynamically arise at g < 0 (see Sec. III).]
Moreover, all non-Hermitian and Hermitian phases, which
appear dynamically in the (2þ 1)-D Thirring model at
g < 0, are degenerated since the density of their ground
state energies is the same and equals g3=ð48πÞ.
Recall that in the recent papers [14,15] it has been

proven that spontaneous (and spatially homogeneous)
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non-Hermiticity found in some massless models with four-
fermion interactions disappears if a nonzero bare
(Hermitian) fermion mass is introduced into the model.
In contrast, in the next section we show that the effect of
spontaneous non-Hermiticity, observed in the massless
(2þ 1)-D Thirring model, can also occur in the massive
variant of the model.

V. SPONTANEOUS NON-HERMITICITY IN THE
MASSIVE THIRRING MODEL

A. The case of nonzero bare Haldane mass

First of all, we investigate the question of the possibility
of spontaneous non-Hermiticity in the framework of the
massive (2þ 1)-D Thirring model with a nonzero bare
Haldane mass m0H. In this case the Lagrangian of the
model looks like

L ¼ Ψ̄k½γνi∂ν þ τm0H�Ψk −
G
2N

ðΨ̄kγ
μΨkÞðΨ̄lγμΨlÞ: ð52Þ

This Lagrangian is invariant under continuous chiral trans-
formations (3), discrete space parity P3 and two PT
transformations, P5T 5 and P5T 3 (see Table I). Other
discrete symmetries of the massless Thirring model (1),
which have been considered in Sec. II A, are violated
explicitly by the Haldane mass term. However, the con-
tinuous Uð2NÞ symmetry inherent in the model (1) is also
characteristic of Lagrangian (52). To begin with, we are
going to study the possibility of dynamical appearance of
different Hermitian mass terms,mD,m3 andm5 (in addition
to Haldane massmH), in the framework of the HF approach
to this massive model.

1. Dynamical generation of Hermitian mass terms

The consideration is again performed on the basis of
the CJT effective action (22) and its stationary HF
equation (23), in which this time Dðx; yÞ ¼ ½γνi∂ν þ
τm0H�δ3ðx − yÞ, i.e., D̄ðpÞ ¼ p̂þ τm0H. Fourier transfor-
mation of the gap HF equation (23) reads as

−iðS−1ÞβαðpÞ¼ ðp̂Þβαþm0HðτÞβα−GðγρÞβα
Z

d3q
ð2πÞ3 tr½γρS̄ðqÞ�

þG
N

Z
d3q
ð2πÞ3 ½γ

ρS̄ðqÞγρ�βα: ð53Þ

We are looking for the solution S̄ðpÞ of the gap HF
equation (53) in the form presented by Eqs. (28) and
(29), i.e.,

S−1ðpÞ ¼ iðp̂þmD þmHτ þ iγ5m5 þ iγ3m3Þ; ð54Þ

where mD, mH, m3 and m5 are real quantities [it corre-
sponds to dynamical appearance of the Hermitian mass
term (26) in the model (52)]. Using this ansatz in Eq. (53),

one can obtain for mD, mH, m3 and m5 the unrenormalized
system of gap equations in which all equations look the
same as in the system (30), except for the first one, which
has the form

mH ¼ m0H þ 3iG
2N

Z
d3p
ð2πÞ3

�
ΣþmH

p2 − ðΣþmHÞ2

−
Σ −mH

p2 − ðΣ −mHÞ2
�
: ð55Þ

To renormalize the obtained system of gap equations,
we require (i) that the bare coupling constant G has the
same dependence (35) on the cutoff parameter Λ as in
the massless case. (ii) Moreover, we need at Λ → ∞ the
fulfillment of the following relation:

m0H

G
¼ � 3μ2

8Nπ
þ μ2O

�
μ

Λ

�
; ð56Þ

where, in addition to g, μ is another finite and renormal-
ization group invariant free model parameter. Like g, it has
the dimension of [mass]. For definiteness, in the following
consideration we select the “plus” sign in Eq. (56). In this
case, just under the above (i) and (ii) constraints on G and
m0H, the renormalized HF system of gap equations for mD,
mH, m3 and m5 can be obtained at Λ → ∞,

gmHþðΣþmHÞjΣþmHj− ðΣ−mHÞjΣ−mHj ¼μ2;

mD

�
gþ 1

Σ
½ðΣþmHÞjΣþmHjþðΣ−mHÞjΣ−mHj�

�
¼0;

m3

�
gþ 1

Σ
½ðΣþmHÞjΣþmHjþðΣ−mHÞjΣ−mHj�

�
¼0;

m5

�
gþ 1

Σ
½ðΣþmHÞjΣþmHjþðΣ−mHÞjΣ−mHj�

�
¼0:

ð57Þ

In general, the stationary HF system of equations (57) has
several solutions. The most preferred of them is the one that
minimizes the value of the CJT effective potential VðSÞ
defined in Eq. (37). In the HF approach to the massive
Thirring model (52), it looks like

VðSÞ≡Vmas
H ðmH;ΣÞ¼

1

12π
ð−6μ2mHþ3gΣ2þ3gm2

H

þ2jΣþmHj3þ2jΣ−mHj3Þ; ð58Þ

where Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þm2
3 þm2

5

q
and subscript H means that

effective potential Vmas
H corresponds to a model (52) with

bare Haldane mass. [The expression (58) is obtained in
Appendix B 2.]
Suppose that g > 0. In this case both terms in curly

braces of the system (57) are positive, so its solution is such
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that mD ¼ m3 ¼ m5 ¼ 0, i.e., with Σ ¼ 0. Then a remain-
ing mass, mH, obeys the equation

gmH þ 2mHjmHj ¼ μ2: ð59Þ

Hence, at g > 0 the HF system of equations (57) has a
single solution with mD ¼ m3 ¼ m5 ¼ 0. Moreover, its
Haldane mass component looks like

mH ¼ ðmHÞ0 ≡
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ 8μ2
q

− g


=4: ð60Þ

But in the case g < 0, depending on the relationship
between g and μ, the stationary HF system of equations (57)
has several solutions. The most preferred of them is the one
that minimizes the value of the CJT effective potential (58).
Investigating this function with the help of any program
of analytical calculations, it can be shown that in the GMP
of the effective potential (58) we have again mD ¼ m3 ¼
m5 ¼ 0 and mH ¼ ðmHÞ0 [the last quantity is also defined
by Eq. (60)].
As a result, we see that no other Hermitian mass terms

are dynamically generated in the model (52) in addition to
Haldane mass. The Hermitian ground state of this massive
Thirring model has the same symmetry as the initial bare
Lagrangian (52), and the mass of its quasiparticle excita-
tions, i.e., the pole of the propagator S̄ðpÞ (54), equals
ðmHÞ0 (60).

2. Spontaneous non-Hermiticity

Let us now consider the possibility of a situation when a
non-Hermitian ground state can be realized in a perfectly
Hermitian massive model (52). In this case, the dynamics of
quasiparticle excitations of such a ground state is effec-
tively described by non-Hermitian Lagrangian. Within the
framework of the HF approach to the model (52), it is
possible to find a dynamically generated non-Hermitian
mass term MNH of this effective Lagrangian. It looks like
an expression (42), in which at least one of the factors η, ϑ,
κ is necessarily equal to i, and the others are units. To find
MNH, we should look for a solution of the HF equation (53)
in the form (43). Further, assuming the same asymptotic
expansions (35) and (64), respectively, for the bare model
parameters G and m0H, we can obtain a renormalized
system of HF equations for the parametersmH;mD;m3 and
m5 appearing in the non-Hermitian mass term (42). It has
the same form as the system of HF equations (57), in which
it is necessary to substitute Σ̃ instead of Σ (recall,

Σ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2m2

D þ ϑ2m2
5 þ κ2m2

3

q
). Similarly, one can obtain

the effective potential in the HF approximation which
describes the non-Hermitian ground state of the massive
(2þ 1)-D Thirring model (52). It looks like

Vmas
NHHðmH;mD;m3; m5Þ ¼

1

12π
ð−6μ2mH þ 3gΣ̃2 þ 3gm2

H

þ 2jΣ̃þmHj3 þ 2jΣ̃ −mHj3Þ:
ð61Þ

Just its GMPs provide information both about the
symmetry properties of the non-Hermitian ground state
of the model and about the mass spectrum of its
quasiparticles.
Effective potential (61) as a function of mH and Σ̃ has a

GMP of the form ðmH ¼ ðmHÞ0; Σ̃ ¼ 0Þ [see the discussion
on effective potential properties (58) in Sec. VA 1). As a
result, we see that, in addition to the trivial case with η ¼
ϑ ¼ κ ¼ 1 (it corresponds to a dynamical generation of the
Hermitian mass term considered in Sec. VA 1), there are
six different sets η, ϑ, κ, and for each one the effective
potential (61), as a function ofmH;mD;m3 andm5, reaches
its smallest value (the same one) at each point of a two-
dimensional manifold of the form mH ¼ ðmHÞ0; Σ̃ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2m2

D þ ϑ2m2
5 þ κ2m2

3

q
¼ 0. Each point of this manifold

corresponds to the non-Hermitian ground state of the
system described effectively by a Lagrangian with non-
Hermitian mass term of the form (42). At an arbitrary sign
of g, all possible non-Hermitian mass terms dynamically
generated in this case in the model are listed in Eq. (50) in
which mH ¼ ðmHÞ0 of Eq. (60). They appear in the model
spontaneously, and the corresponding non-Hermitian
phases are degenerated since their ground state energy is
the same. In addition, all these non-Hermitian phases are
degenerated with a Hermitian phase corresponding to
the case η ¼ ϑ ¼ κ ¼ 1, where mD ¼ m3 ¼ m5 ¼ 0 and
mH ¼ ðmHÞ0 (60).

B. The case of nonzero bare Dirac mass

Let us explore another limiting variant of the massive
(2þ 1)-D Thirring model, when Lagrangian (1) is
extended by the Hermitian bare Dirac mass term of the
formm0DΨ̄kΨk. In this case, the massive Thirring model is
invariant under all discrete transformations considered in
Sec. II A. However, the continuous chiral symmetries (3)
of the massless model are violated explicitly by the bare
Dirac mass term. As a result, in this case the Uð2NÞ
symmetry of the massless model (1) is reduced to UðNÞ.
Here, we are going to study in the framework of the HF
approach to this massive model the possibility of dynami-
cal generation of both Hermitian and non-Hermitian mass
terms in it.
Again, our consideration is performed on the basis of

the CJT effective action (22) and its stationary HF
equation (23), in which this time Dðx; yÞ ¼ ½γνi∂ν þ
m0D�δ3ðx − yÞ, i.e., D̄ðpÞ ¼ p̂þm0D. Fourier transforma-
tion of this gap HF equation (23) reads as
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−iðS−1ÞβαðpÞ ¼ ðp̂Þβα þm0Dδ
β
α − GðγρÞβα

Z
d3q
ð2πÞ3 tr½γρS̄ðqÞ�

þ G
N

Z
d3q
ð2πÞ3 ½γ

ρS̄ðqÞγρ�βα: ð62Þ

(i) First, we consider the possibility that the solution
S̄ðpÞ of the gap HF equation (62) corresponds to a
Hermitian ground state of the model. In this case, it
has the form presented by Eqs. (28) and (29) with
real mD, mH, m3 and m5 masses and corresponds to
Hermitian mass term (26) which can be generated
dynamically. Using this ansatz in Eq. (62), one can
obtain for mD, mH, m3 and m5 the unrenormalized
system of gap equations in which all equations look
the same as in the system (30), except this time for
the second one, which has the form

mD ¼ m0D þ 3iG
2N

mD

Σ

Z
d3p
ð2πÞ3

�
ΣþmH

p2 − ðΣþmHÞ2

þ Σ −mH

p2 − ðΣ −mHÞ2
�
: ð63Þ

To renormalize this system of equations, we again
require (i) that the bare coupling constant G has
the same dependence (35) on the cutoff parameter Λ
as in the massless case. (ii) Moreover, we need at
Λ → ∞ the fulfillment of the following relation:

m0D

G
¼ � 3μ2

8Nπ
þ μ2O

�
μ

Λ

�
; ð64Þ

where, in addition to g, μ is another finite and
renormalization group invariant free model param-
eter. Like g, it has the dimension of [mass]. For
definiteness, we will further consider the situation
when the expression (64) contains a “plus” sign.
Then, taking into account (i) and (ii) constraints on
bare parameters, the renormalized HF system of gap
equations for mD,mH, m3 andm5 can be obtained at
Λ → ∞ in the Hermitian case,

gmH þ ðΣþmHÞjΣþmHj − ðΣ −mHÞjΣ −mHj ¼ 0;

mD

�
gþ 1

Σ
½ðΣþmHÞjΣþmHj þ ðΣ −mHÞjΣ −mHj�

�
¼ μ2;

m3

�
gþ 1

Σ
½ðΣþmHÞjΣþmHj þ ðΣ −mHÞjΣ −mHj�

�
¼ 0;

m5

�
gþ 1

Σ
½ðΣþmHÞjΣþmHj þ ðΣ −mHÞjΣ −mHj�

�
¼ 0; ð65Þ

where Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þm2
3 þm2

5

q
. We should find such a

solution of the gap system (65) that minimizes the CJT
effective potential VðSÞ (37) calculated in the HF approxi-
mation,

VðSÞ≡Vmas
D ðmD;mH;ΣÞ ¼

1

12π
ð−6μ2mD þ 3gΣ2 þ 3gm2

H

þ 2jΣþmHj3 þ 2jΣ−mHj3Þ:
ð66Þ

[The expression (66) is obtained in Appendix B 2.]
Since in the present consideration we deal with nonzero

values of the mass parameter μ, it is clear from the second
of equations (65) that for both signs of g the expression in
curly braces must be nonzero. So it follows from the last
two equations of this system that m3 ¼ m5 ¼ 0, i.e.,
Σ ¼ jmDj. The GMP of the function (66) must satisfy this
condition. With this in mind, it is much more convenient to
study the effective potential (66) with the help of any

program of analytical calculations. As a result, one can see
that at the GMP of the function Vmas

D we have mH ¼ m3 ¼
m5 ¼ 0 and mD ¼ ðmDÞ0 ≡ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 8μ2

p
− gÞ=4. It means

that the Hermitian ground state of this kind of the massive
Thirring model has the same symmetry as the initial
Lagrangian with nonzero bare Dirac mass. The mass of
its quasiparticle excitations, i.e., the pole of the propagator
S̄ðpÞ, equals ðmDÞ0.
(ii) Now, let us study the possibility that the solution

S̄ðpÞ of the gap HF equation (62) corresponds to a
non-Hermitian ground state spontaneously arising in
the massive Thirring model with nonzero bare Dirac
mass term. To this end, we are looking for the
solution S̄ðpÞ in such a form that

S−1ðpÞ ¼ iðp̂þmHτþmD þ ϑ · im5γ
5 þ κ · im3γ

3Þ;
ð67Þ

where each of the values ϑ, κ is either 1 or i and all
mass parameters mH;mD;m5; m3 are real quantities.
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In this case the solution S̄ðpÞ of the HF equation (62)
corresponds to a dynamical generation of the fol-
lowing mass term:

MNH ¼ Ψ̄kðmHτ þmD þ ϑ · im5γ
5 þ κ · im3γ

3ÞΨk;

ð68Þ

which becomes non-Hermitian (at m3;5 ≠ 0) if at
least one of the factors ϑ, κ is equal to i. [Therefore,
we assume that the Dirac and Haldane masses
remain Hermitian, and the non-Hermiticity of the
ground state arises spontaneously from the non-
Hermitian chiral m3;5-mass terms. A more detailed
discussion of why the Haldane and Dirac mass terms
in Eq. (67) are selected to be Hermitian is presented
at the end of the section.] Substituting expression
(67) into HF equation (62) and postulating there
the same behaviors of the bare coupling constant G
and the bare Dirac mass m0D, which are given in
formulas (35) and (64), respectively, one can obtain
formD;mH;m3 andm5 a renormalized HF system of
equations of the form (65), in which the following
substitutions must be made, m3 → κm3; m5 → ϑm5

and Σ → Σ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ ϑ2m2
5 þ κ2m2

3

q
. Since we are

looking for non-Hermitian phases with a real spec-
trum of its quasiparticles, it must be supposed that ϑ,
κ and mD;m5; m3 are such that m2

D þ ϑ2m2
5þ

κ2m2
3 ≥ 0. Moreover, performing the same replace-

ments in Eq. (66), we obtain HF effective potential
VðSÞ of the massive Thirring model with nonzero
bare Dirac massm0D when fermion propagator S̄ðpÞ
looks like Eq. (67), i.e.,

VðSÞ≡ Vmas
NHDðmD;mH; Σ̃Þ

¼ 1

12π
ð−6μ2mD þ 3gΣ̃2 þ 3gm2

H þ 2jΣ̃þmHj3

þ 2jΣ̃ −mHj3Þ: ð69Þ

Now we are ready to conclude that the non-
Hermitian mass term of the form (68) cannot be
generated dynamically in the massive Thirring
model under consideration. The first reason for this
is the fact that for any allowable values of ϑ, κ (recall
that ϑ ¼ 1 or i and κ ¼ 1 or i), the corresponding
system of HF equations has only solutions with
m3 ¼ m5 ¼ 0 [see also the discussion after Eq. (66)
in the Hermitian case], and, as a consequence, the
non-Hermiticity in the mass term (68) disappears.
Second, it is also interesting to note that in all cases
when we try to find a non-Hermitian solution of the
form (67) of the HF equation (62), the corresponding
effective potential (69) becomes unbounded from
below as soon as ϑ ≠ 1 and/or κ ≠ 1. To confirm this

fact, consider for simplicity the case ϑ; κ ¼ i. As a
result, the quantity Σ̃ in Eq. (69) takes the form Σ̃ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D −m2
3 −m2

5

q
. Then, supposing that in Eq. (69)

mH ¼ const, Σ̃ ¼ 0, i.e., m2
D ¼ m2

3 þm2
5, we see

that in the limit mD → ∞ the effective potential
Vmas
NHD tends to −∞, i.e., it is an unbounded from

below function. Hence the non-Hermitian stable
ground state which is characterized by non-Hermitian
mass term (68) cannot be generated spontaneously in
the (2þ 1)-D massive Thirring model with nonzero
bare Dirac mass m0D.

In this subsection, we have excluded from consideration
the possibility of the dynamical appearance of the non-
Hermitian Dirac and Haldane mass terms in the model [see
Eq. (68)]. The reason for Dirac massmD is that, as it is easy
to see from Eq. (69), the effective potential becomes
a complex-valued quantity when mD is not real, and
hence the ground state of the system is unstable. As regards
the exclusion from consideration of the non-Hermitian
Haldane mass term, in this case the spectrum of quasipar-
ticles, i.e., the pole of the fermionic propagator S̄ðpÞ,
becomes explicitly complex valued, and the theory
becomes unstable (see also the remark made in footnote 5
at the beginning of Sec. IV).
The main result of this section is the following. Until

now, the phenomenon of spontaneous non-Hermiticity has
been established only in the frameworks of some massless
quantum field theory models with four-fermion interaction
[14,15]. Here, based on the HF approach, we present
arguments in favor of the fact that not only in the massless
but also in the massive (2þ 1)-D Thirring model (with
nonzero bare Haldane mass) a non-Hermitian ground state
can arise.

VI. SUMMARY AND CONCLUSIONS

In the present paper we have studied the possibility of
the dynamical appearance of both Hermitian and non-
Hermitian mass terms in the originally Hermitian (2þ 1)-
dimensional Thirring model. The last possibility means that
non-Hermiticity can appear spontaneously in the model.
First of all, we consider dynamical symmetry breaking

and fermion mass generation in the massless version (1) of
the Thirring model. As it is shown in Sec. II A, in this case
the model is invariant under transformations from Uð2NÞ
group, which contains two continuous chiral subgroups,
Uð1Þγ5 and Uð1Þγ3 (3). Moreover, it is also symmetric with
respect to several discrete transformations, two space
reflections (or parity), P3 and P5, and two time reversals,
T 3 and T 5. As a consequence, the massless (2þ 1)-D
Thirring model is invariant under four different discrete
PkT l (where k, l ¼ 3, 5) transformations (see Table I).
The problem of dynamical mass generation is inves-

tigated using a nonperturbative HF approach based on the
CJT effective action ΓðSÞ (17) for the composite bifermion
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operator Ψ̄kðxÞΨkðyÞ. In fact, ΓðSÞ is a functional of a full
fermion propagator Sðx; yÞ (see Sec. II B). In this case, in
order to find the true fermion propagator of the initially
massless Thirring model and to determine what kind
of fermionic mass terms, Hermitian MH (26) or non-
Hermitian MNH (42), can arise dynamically in the model,
it is sufficient to consider both the stationary equation (21)
and the CJT effective action (17) itself up to a first order in
the coupling constant G [see Eqs. (25) and (22), respec-
tively]. This is the essence of the Hartree-Fock method,
which was used previously to prove the possibility of
spontaneous non-Hermiticity in the massless (2þ 1)-D GN
model [15].
Using the HF approach, we have shown that due to the

behavior (35) of the bare coupling constant GðΛÞ vs cutoff
parameter Λ, the gap HF equation (25) can be renormal-
ized, i.e., reduced to a form which does not contain bare
coupling G, but instead it depends only on the renormal-
ization group invariant and finite free model parameter g [it
is introduced by Eq. (35)]. More significant is the fact that
this renormalized HF equation has two sets of solutions.
Conventionally, they can be called a set of (i) Hermitian and
(ii) non-Hermitian solutions.
At g < 0, each solution from the Hermitian set (i) cor-

responds to the dynamical appearance of one or another
Hermitian mass termMH of the form (26) in the model. In
this case, a spontaneous violation of one or another,
discrete or continuous, symmetry of the model occurs,
and qualitatively different phases can arise spontaneously
in the massless (2þ 1)-D Thirring model. Quasiparticle
excitations of their ground states have the same mass MF
equal to jgj=2, but the dynamics of these excitations is
described by Lagrangians with different Hermitian mass
terms (26). All these Hermitian phases of the model are
degenerated, because the free energy density of their
ground states is the same, and it is equal to 1

48π g
3.

In contrast, at g > 0 the set (i) consists of a single
solution withmH ¼ mD ¼ m3 ¼ m5 ¼ 0. In this case there
is no symmetry breaking in the model. Quasiparticle
excitations of its ground state are massless and their
dynamics is described by the initially Hermitian massless
Thirring Lagrangian (1).
Furthermore, we have shown that in the massless

(2þ 1)-D Thirring model, each solution S̄ðpÞ of the HF
equation (25) from a non-Hermitian set (ii) corresponds to a
dynamical appearance of a non-Hermitian mass termMNH
of one of the forms (42), (49)–(51). As a result, in this
case both at g < 0 and g > 0 the model can implement
such phases in which quasiparticle excitations of their
ground states have a real mass spectrum, but, however, the
dynamics of these excitations is described by Lagrangians
with non-Hermitian mass terms, i.e., spontaneous gener-
ation of non-Hermiticity occurs. All these non-Hermitian
phases of the massless (2þ 1)-D Thirring model are
qualitatively different in the sense that their ground states

differ significantly from each other in terms of their
symmetry properties. Indeed, several non-Hermitian phases
can be realized in the model, in which one or another PkT l
(where k, l ¼ 3, 5) symmetry remains unbroken. However,
there are also such non-Hermitian phases in which all PkT l
symmetries are spontaneously broken, etc. (for details,
see Sec. IV).
It is interesting to note that at each fixed value of g the

variety of all Hermitian and non-Hermitian phases is
degenerated, i.e., the ground states of all these phases have
the same free energy density, and the phases, both
Hermitian and non-Hermitiian, can appear spontaneously
in the massless (2þ 1)-D Thirring model (1) on the same
footing. It means that the genuine vacuum (or ground state)
of the (2þ 1)-D Thirring model is a mixed phase (or state).
It can be imagined as a space, filled with one of these
degenerated phases, in which bubbles of another, Hermitian
and/or non-Hermitian, phase can be created.
Finally, in Sec. V, we have shown that spatially homo-

geneous spontaneous non-Hermiticity can also be realized
in the massive (2þ 1)-D Thirring model, but only when the
bare Haldane mass term is nonzero. [In contrast, sponta-
neous non-Hermiticity was not found in the massive
(2þ 1)-D GN model [15] as well as in the massive NJL
model [14].] It turns out that in this case (and at arbitrary
signs of g) the true vacuum of the model is indeed the
mixed phase composed of a single Hermitian phase, in
which the dynamics of quasiparticles is described by a
Lagrangian with a Hermitian mass term of the form (26)
with mD ¼ m3 ¼ m5 ¼ 0, mH ¼ ðmHÞ0 (60), and also of
some non-Hermitian phases. The latter are described by
Lagrangians with non-Hermitian mass terms (for details,
see the end of Sec. VA 2).
Notice that in the framework of the HF approach,

the effect of spontaneous non-Hermiticity of the model
under consideration can be detected only at finite N, i.e.,
outside the leading order of the large-N expansion
technique. Just the Fock term of the HF equation (25)
plays the basic role in its appearance both in the (2þ 1)-D
Thirring and GN [15] models. In addition, we are sure that
using the HF method it is possible to show that in the
generalized (2þ 1)-D Thirring model previously consid-
ered in [39], a non-Hermitian ground state can also arise
spontaneously.
We hope that the results of this article can be useful for

describing physical phenomena in condensed matter
systems having a planar crystal structure, or in thin films,
e.g., like graphene. In such situations, it often happens that
the elementary excitations of the system are massless.
As a result, at low energies and in the continuum limit,
their physical phenomena can be effectively described
by massless quantum field theory models with four-
fermion interactions of the type (1) [19,20,23]. Just in
these cases, the effect of spontaneous non-Hermiticity
could be manifested.
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APPENDIX A: ALGEBRA OF THE γ MATRICES
IN THE CASE OF SOð2;1Þ GROUP

The two-dimensional irreducible representation of the
(2þ 1)-dimensional Lorentz group SOð2; 1Þ is realized by
the following 2 × 2 γ̃ matrices:

γ̃0 ¼ σ3 ¼
�
1 0

0 −1

�
; γ̃1 ¼ iσ1 ¼

�
0 i

i 0

�
;

γ̃2 ¼ iσ2 ¼
�

0 1

−1 0

�
; ðA1Þ

acting on two-component Dirac spinors ψðxÞ. They have
the properties

Trðγ̃μγ̃νÞ ¼ 2gμν; ½γ̃μ; γ̃ν� ¼ −2iεμναγ̃α;

γ̃μγ̃ν ¼ −iεμναγ̃α þ gμν; ðA2Þ

where gμν ¼ gμν ¼ diagð1;−1;−1Þ; γ̃α ¼ gαβγ̃β; ε012 ¼ 1.
There is also the relation

Trðγ̃μγ̃νγ̃αÞ ¼ −2iεμνα: ðA3Þ
Note that the definition of chiral symmetry is slightly
unusual in (2þ 1) dimensions [spin is here a pseudoscalar
rather than (axial) vector]. The formal reason is simply that
there exists no other 2 × 2 matrix anticommuting with the
Dirac matrices γ̃ν which would allow the introduction of a
γ5 matrix in the irreducible representation. The important
concept of “chiral” symmetries and their breakdown by
mass terms can nevertheless be realized also in the
framework of (2þ 1)-dimensional quantum field theories
by considering a four-component reducible representation
for Dirac fields. In this case the Dirac spinorsΨðxÞ have the
following form:

ΨðxÞ ¼
�
ψ1ðxÞ
ψ2ðxÞ

�
; ðA4Þ

with ψ1, ψ2 being two-component spinors. In the reducible
four-dimensional spinor representation one deals with
4 × 4 γ matrices: γμ ¼ diagðγ̃μ;−γ̃μÞ, where γ̃μ are given
in (A1). (This particular reducible representation for γ
matrices is used, e.g., in Ref. [47].) One can easily show
that (μ, ν ¼ 0, 1, 2):

TrðγμγνÞ ¼ 4gμν; γμγν ¼ σμν þ gμν;

σμν ¼ 1

2
½γμ; γν� ¼ diagð−iεμναγ̃α;−iεμναγ̃αÞ: ðA5Þ

In addition to the Dirac matrices γμ (μ ¼ 0, 1, 2) there exist
two other matrices, γ3 and γ5, which anticommute with all
γμ (μ ¼ 0, 1, 2) and with themselves:

γ3 ¼
�
0; I

I; 0

�
; γ5 ¼ γ0γ1γ2γ3 ¼ i

�
0; −I
I; 0

�
;

τ ¼ −iγ3γ5 ¼
�
I; 0

0; −I

�
ðA6Þ

with I being the unit 2 × 2 matrix.

APPENDIX B: HF APPROACH TO THE CJT
EFFECTIVE POTENTIAL VðSÞ

1. The case of massless Thirring model

In this case we have Dβ
αðx; yÞ ¼ ðγνÞβαi∂νδ3ðx − yÞ, so

D̄ðpÞ ¼ p̂≡ γνpν. It is clear from definition (37) that in
order to get an effective potential VðSÞ in the HF approxi-
mation, it is necessary to calculate the CJT effective action
(22) using there for the full fermion propagator Sðx; yÞ the
expression presented by Fourier transformation S̄ðpÞ [(27)
and (28)]. In addition, in this case the bare coupling G is
defined by its asymptotic behavior (35). As a result, the
CJT effective action ΓðSÞ (22) looks like

ΓðSÞ ¼ Γ1 þ Γ2 þ Γ3 þ Γ4; ðB1Þ

where

Γ1 ≡ −iTr lnð−iS−1Þ ¼ −i
Z

d3x
Z

d3p
ð2πÞ3 tr lnð−iS

−1ðpÞÞ

¼ −i
Z

d3x
Z

d3p
ð2πÞ3 ln Detðp̂þmD þmHτ þ im5γ

5 þ im3γ
3Þ; ðB2Þ

Γ2 ≡
Z

d3xd3ySαβðx; yÞDβ
αðy; xÞ ¼

Z
d3x

Z
d3p
ð2πÞ3 tr½S̄ðpÞD̄ðpÞ� ¼

Z
d3x

Z
d3p
ð2πÞ3 tr½S̄ðpÞp̂�

¼ i
Z

d3x
Z

d3p
ð2πÞ3

4p2ðΣ2 þm2
H − p2Þ

ððΣþmHÞ2 − p2ÞððΣ −mHÞ2 − p2Þ ; ðB3Þ
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Γ3 ≡ −
G
2

Z
d3x tr½γρSðx; xÞ�tr½γρSðx; xÞ� ¼ −

G
2

Z
d3x

Z
d3p
ð2πÞ3 tr½γ

ρS̄ðpÞ�
Z

d3q
ð2πÞ3 tr½γρS̄ðqÞ�; ðB4Þ

Γ4 ≡ G
2N

Z
d3x tr½γρSðx; xÞγρSðx; xÞ� ¼

G
2N

Z
d3x

Z
d3p
ð2πÞ3

Z
d3q
ð2πÞ3 tr½γ

ρS̄ðpÞγρS̄ðqÞ�: ðB5Þ

Note that in Eq. (B2) we have used for S−1ðpÞ the
expression (27), as well as a rather general relation
tr ln A ¼ ln DetA. Moreover, in Eq. (B3) we took into
account that p̂ is indeed a Fourier image of the operator
Dðx; yÞ. Using Eq. (28), it is possible to show that [see the
notations given in Eq. (29)]

tr½γρS̄ðpÞ� ¼ −
4pρ

detðpÞ ðΣ
2 þm2

H − p2Þ; ðB6Þ

i.e., it is an odd expression vs each momentum pρ. As
a result, in Eq. (B4) each of the integrals on three-
dimensional momenta is zero, and the entire expression
Γ3 is also zero. The determinant in Eq. (B2) can be easily
calculated, so we have

Γ1 ¼ −i
Z

d3x
Z

d3p
ð2πÞ3 ln½ððΣþmHÞ2 − p2Þ

× ððΣ −mHÞ2 − p2Þ�: ðB7Þ

Performing in the integrals of Eqs. (B3) and (B7) a Wick
rotation, p0 → ip3, and then using in the obtained three-
dimensional Euclidean integration space the spherical
coordinate system, p3 ¼ p cos θ; p1 ¼ p sin θ cosϕ; p2 ¼
p sin θ sinϕ, we have (after integration over angles,
0 ≤ θ ≤ π; 0 ≤ ϕ ≤ 2π, and cutting off the region of
integration of the variable p, 0 ≤ p ≤ Λ) the following
asymptotic expansions for Γ1 and Γ2 at large values of Λ:

Γ1 ¼
1

2π2

Z
d3x

n
2ΛðΣ2 þm2

HÞ −
π

3
jΣþmHj3

−
π

3
jΣ −mHj3 þ � � �

o
; ðB8Þ

Γ2 ¼
1

2π2

Z
d3xf−4ΛðΣ2 þm2

HÞ þ πjΣþmHj3

þ πjΣ −mHj3 þ � � �g; ðB9Þ
where three dots mean the terms which disappear at
Λ → ∞.
It is obvious that only the first term, even over each of the

momentum pν, in expression (28) for the propagator S̄ðpÞ
will contribute to Γ4. Then, taking into account that γρ ¼
diagðγ̃ρ;−γ̃ρÞ (see in Appendix A), one can obtain from
Eq. (28)

Γ4 ¼
−6G
2N

Z
d3x

Z
d3p
ð2πÞ3

Z
d3q
ð2πÞ3

1

detðpÞ detðqÞ
× faðpÞaðqÞ − bðpÞb̄ðqÞ − b̄ðpÞbðqÞ þ āðpÞāðqÞg:

ðB10Þ

Performing in the momentum integrals of Eq. (B10) a Wick
rotation into the Euclidean momentum space and making
there the same operations that we did with the analogous
situation in the expressions (B7) and (B3) for Γ1 and Γ2, we
obtain

Γ4 ¼
3G
4π4N

Z
d3x

��Z
Λ

0

p2dp
ðΣ2 −m2

HÞðmD −mHÞ þ p2ðmD þmHÞ
ððΣþmHÞ2 þ p2ÞððΣ −mHÞ2 þ p2Þ

�
2

þ
�Z

Λ

0

p2dp
ðΣ2 −m2

HÞðmD þmHÞ þ p2ðmD −mHÞ
ððΣþmHÞ2 þ p2ÞððΣ −mHÞ2 þ p2Þ

�
2

þ2ðm2
5 þm2

3Þ
�Z

Λ

0

p2dp
Σ2 −m2

H þ p2

ððΣþmHÞ2 þ p2ÞððΣ −mHÞ2 þ p2Þ
�
2
�
: ðB11Þ

Using in each square bracket of Eq. (B11) the following general asymptotic expansion formula (at Λ → ∞)

Z
Λ

0

x2dx
Aþ Bx2

ðx2 þm2Þðx2 þ n2Þ ¼ BΛþ πBðn3 −m3Þ þ πAðm − nÞ
2ðm2 − n2Þ þ Bðn2 þm2Þ − A

Λ
þ � � � ; ðB12Þ

wherem ¼ jΣþmHj and n ¼ jΣ −mHj, as well as taking into account the expansion (35) for bare coupling constantG, we
have
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Γ4 ¼
1

2π2

Z
d3x

�
2ΛðΣ2 þm2

HÞ −
πg
2
ðΣ2 þm2

HÞ − πjΣþmHj3 − πjΣ −mHj3 þ � � �
�
: ðB13Þ

As a result, it follows from Eqs. (B8), (B9), and (B13) as well as from the relation Γ3 ≡ 0 that if fermion propagator S has
the form (28), then HF effective action ΓðSÞ (22) in the limit Λ → ∞ looks like

ΓðSÞ ¼ Γ1 þ Γ2 þ Γ3 þ Γ4 ¼ −
1

12π

Z
d3xf3gðΣ2 þm2

HÞ þ 2jΣþmHj3 þ 2jΣ −mHj3g; ðB14Þ

and the corresponding effective potential VðSÞ takes a
form (38).

2. HF approach to VðSÞ in the case of nonzero
bare mass terms

The presence of nonzero bare Haldane mass.—In this
case, to find the effective potential VHðSÞ in the HF
approximation [here and below the subscript H means
that the model contains a nonzero bare Haldane mass (52)],
we start from the expression (B1) for CJT effective action
ΓðSÞ in the massless case, in which for D̄ðpÞ it is necessary
to use D̄ðpÞ ¼ p̂þ τm0H (see Sec. V). Hence the CJT
effective action ΓHðSÞ for the corresponding massive
Thirring model has the form

ΓHðSÞ ¼ ΓðSÞ þm0H

Z
d3x

Z
d3p
ð2πÞ3 tr½S̄ðpÞτ�; ðB15Þ

where ΓðSÞ is presented by Eq. (B14). Only the part of
expression (28) for S̄ðpÞ that is even over each momentum
pν will give a nonzero contribution to Eq. (B15). So,
performing in this expression a Wick rotation and intro-
ducing a cutoff parameter Λ [for more details, see the text
after Eq. (30)], we have

ΓHðSÞ ¼ ΓðSÞ þm0H

2π2

Z
d3x

×
Z

Λ

0

p2dp
4p2mH − 4ðΣ2 −m2

HÞmH

ððΣþmHÞ2 þp2ÞððΣ−mHÞ2 þp2Þ :

ðB16Þ

Now, applying the asymptotic expansion (B12) to the
integral over p in Eq. (B16), we obtain at Λ → ∞

ΓHðSÞ ¼ ΓðSÞ þm0H

2π2

Z
d3x

�
4mHΛþm2

HO
�
mH

Λ

��
:

ðB17Þ

It follows from asymptotic expansions (35) and (56) for
bare quantities G and m0H, respectively, that

m0H ¼ �μ2
π

4Λ
þ μO

�
μ2

Λ2

�
: ðB18Þ

Hence, taking into account this relation in Eq. (B17), we
have at Λ → ∞ a finite and renormalization group invariant
expression for the CJT effective action ΓHðSÞ in the HF
approximation,

ΓHðSÞ ¼ ΓðSÞ � μ2mH

2π

Z
d3x; ðB19Þ

where ΓðSÞ is the HF approximation (B14) of the CJT
effective action of the massless Thirring model. Using the
definition (37), it is possible to obtain from Eq. (B19) the
corresponding effective potential Vmas

H (58) of the massive
Thirring model (52) with nonzero bare Haldane mass term
[when the sign “plus” is selected in Eqs. (B18) and (B19),
for definiteness].
The presence of nonzero bare Dirac mass.—In this case,

to find the effective potential VDðSÞ in the HF approxi-
mation [here and below the subscript D means that the
model (1) is extended now by the bare Dirac mass term
m0DΨ̄kΨk], we start from the expression (B1) for CJT
effective action ΓðSÞ in the massless case, in which for
D̄ðpÞ it is necessary to use D̄ðpÞ ¼ p̂þm0D. Hence, the
CJT effective action ΓDðSÞ has the form

ΓDðSÞ ¼ ΓðSÞ þm0D

Z
d3x

Z
d3p
ð2πÞ3 tr½S̄ðpÞ�; ðB20Þ

where ΓðSÞ is presented again by Eq. (B14). Only the part
of expression (28) for S̄ðpÞ that is even over each
momentum pν will give a nonzero contribution to
Eq. (B20). So, performing in this expression a Wick
rotation and introducing a cutoff parameter Λ [for more
details, see the text after Eq. (30)], we have

ΓDðSÞ ¼ ΓðSÞ þm0D

2π2

Z
d3x

Z
Λ

0

p2dp

×
4p2mD þ 4ðΣ2 −m2

HÞmD

ððΣþmHÞ2 þ p2ÞððΣ −mHÞ2 þ p2Þ : ðB21Þ

Due to the asymptotic expansion (B12), we have from
Eq. (B21)
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ΓDðSÞ ¼ ΓðSÞ þm0D

2π2

Z
d3x

�
4mDΛþm2

DO
�
mD

Λ

��
:

ðB22Þ

Finally, we should take into account in Eq. (B22) the
asymptotic expansion

m0D ¼ �μ2
π

4Λ
þ μO

�
μ2

Λ2

�
; ðB23Þ

which follows from Eqs. (35) and (64). As a result, at
Λ → ∞we have from Eq. (B22) a finite and renormalization

group invariant expression for the CJT effective action
ΓDðSÞ in the HF approximation,

ΓDðSÞ ¼ ΓðSÞ � μ2mD

2π

Z
d3x; ðB24Þ

where ΓðSÞ is the HF approximation (B14) to the CJT
effective action of the massless Thirring model. Using the
definition (37), it is possible to obtain from Eq. (B24) the
corresponding effective potential Vmas

D (66) of the massive
Thirring model with nonzero bare Dirac mass term [when
the sign “plus” is selected in Eq. (B23), for definiteness].
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