импульсный регулятор постоянного напряжения

Филиал «Протвино» университета «Дубна Кафедра автоматизации технологических процессов и производств

Представлены результаты математического моделирования схемы преобразования напряжения с регулировкой от нуля до максимума. Получены зависимости, позволяющие производить расчёт таких преобразователей.

Для некоторых потребителей постоянного тока требуется изменяемое по величине напряжение. В первую очередь это двигатели постоянного тока, скорость вращения которых прямо пропорциональна величине питающего напряжения.

В основе работы импульсного регулятора (ИР) лежит принцип периодического подключения нагрузки к источнику напряжения неизменной величины. Предположим, что нагрузка подключена к источнику напряжения через ключевой элемент K (рис. 1а), который периодически замыкается и размыкается. Времена замкнутого () и разомкнутого () состояния ключа можно автоматически изменять, воздействуя на него сигналами, поступающими из системы управления (СУ). В результате к нагрузке будет приложено импульсное напряжение, форма которого соответствует диаграмме, представленной на рис. 1 б). Очевидно, что среднее значение напряжения на нагрузке будет зависеть от соотношения времён замкнутого и разомкнутого состояния ключа K. Согласно определению среднего значения напряжения можно записать

$$- \qquad - \qquad , \qquad (1)$$

где — среднее значение напряжения на нагрузке; T — период переключения ключа K; f — частота переключения ключа K.

Отношение называют скважностью работы ключа. Изменяя скважность q, можно регулировать выходное напряжение на нагрузке. Регулирование напряжения в рассматриваемой схеме за счёт изменения скважности можно рассматривать как модуляцию входного напряжения ключом K.

Наибольшее распространение получил <u>способ широтно-импульсной модуляции</u> — время переменное, а частота f — постоянная. В [1] детально рассмотрены две известные схемы ИР с последовательным и параллельным ключевым элементом. Они обеспечивают либо уменьшение, либо увеличение напряжения на нагрузке при изменении времени .

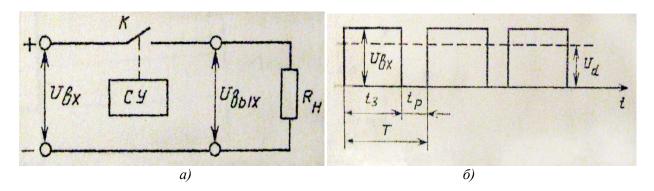


Рис. 1. Импульсный регулятор с последовательным ключевым элементом: а) эквивалентная схема; б) диаграмма выходного напряжения на нагрузке

Известна также третья схема шим-регулятора (рис. 2):

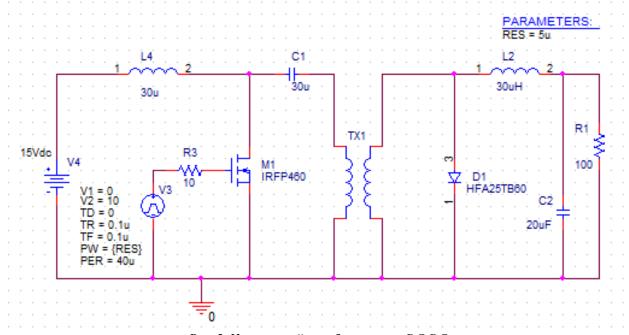


Рис. 2. Импульсный преобразователь DC-DC с непрерывным регулированием напряжения (от 0 до Umax)

- она позволяет получить напряжение на нагрузке, величина которого может изменяться от нуля до четырех-пятикратного значения от входного напряжения. Это весьма важный фактор, позволяющий осуществлять непрерывную регулировку процесса (например, с момента пуска двигателя до необходимого максимума скорости);
- вторая ее особенность заключается в том, что выходное напряжение имеет отрицательную полярность относительно входного: в некоторых случаях это удобно. Например, для питания операционных усилителей или мощных звуковых усилителей (УНЧ) нужно именно двухполярное питание.

В случае, когда требуется гальваническая развязка нагрузки от источника питания, можно использовать трансформатор.

Следует отметить, что в [1] приведено весьма ограниченное по объёму описание принципа работы таких схем и не приведено расчетных соотношений для их проектирования. Нами проведено математическое моделирование на ЭВМ в программе "OrCad 9.2". модели схемы реверсивного регулятора постоянного напряжения с целью получения зависимостей токов и напряжений при вариации сопротивления нагрузки и длительности отпирающего импульса транзистора.

В таблице 1 приведены некоторые данные опытов на математической модели.

Таблица 1

Бестрансформаторный вариант								
	Uex	<i>Ивых</i>	tu mkc	L mkΓn	Rн	Рн Вт	Pnomp	г
	(B)	(B)			ом	-	Bm	
1	20	40	20	40	20	75	94	0,82
2	20	62	20	40	50	77	95	0,8
3	20	84	20	40	100	88	95	0,81
4	40	80	20	40	20	320	380	0,78
5	40	120	20	40	50	310	375	0,77
6	40	170	20	40	100	295	375	0,7
7	30	53-145	20	50	20-160	45	175	
Трансформаторный вариант								
8	50	95	20	40	20	490	600	0,83
9	50	150	20	40	50	480	600	0,82
10	50	210	20	40	100	460	600	0,8
11	30	27-77	10	50	20-160	40	46	0,85
12	30	53-145	20	50	20-100	145	175	0,88

Более полное представление о процессах в исследуемой схеме дают временные и параметрические зависимости токов, два дросселя, разделительный конденсатор на нагрузке и транзисторе — при изменении времени открытого состояния транзистора. Эти зависимости приведены на рис. 3.

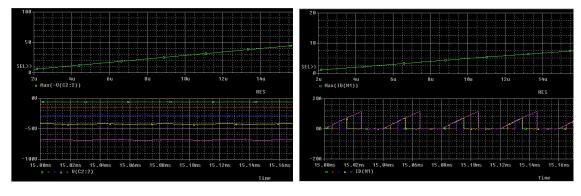


Рис. 3. Напряжение на нагрузке

Рис. 4. Ток транзистора

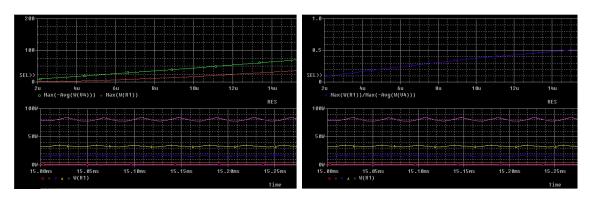


Рис. 5. Мощности в нагрузке и потребляемые

Рис. 6.

• Из их рассмотрения видно, что при увеличении времени открытого состояния транзистора возрастают величины токов, напряжений и мощностей. Таким образом, можно регулировать напряжение на нагрузке.

Библиографический список

1. *Розанов Ю. К.* Основы силовой электроники. / Ю. К. Розанов — М.: Энергоатомиздат, 1992. — 296 с: ил.