К РАСЧЕТУ РЕЖИМА ДИНАМИЧЕСКОГО ТОРМОЖЕНИЯ ТРЕХФАЗНОГО АСИН-ХРОННОГО ДВИГАТЕЛЯ С КОРОТКОЗАМКНУТЫМ РОТОРОМ

к.т.н., с.н.с. Леонов А.П. филиал «Протвино» университета «Дубна», г. Протвино

Предлагается методика расчета величины постоянного тока в обмотке статора, обеспечивающей остановку двигателя в течение заданного времени.

ABOUT DYNAMIC BRAKING REGIME CALCULATION OF THE THREE-PHASE ASYN-CHRONOUS MOTOR WITH A SHORT-CIRCUITED ROTOR

Leonov A.P.

The constant current value calculation is offered in stator winding ensuring motor stop within the preset time.

Динамическое торможение трехфазного асинхронного двигателя (АД) с короткозамкнутым (кз) ротором, при котором потери энергии в двигателе примерно в три раза меньше, чем при торможении противовключением, находит достаточно широкое применение в электроприводах производственных механизмов [1, 2].

Исходные данные для расчета режима динамического торможения заданы в таблице 1.

Таблица 1

Исходные данные	Вид движения нагрузки	
	вращательное	поступательное
Время динамического торможения $t_{\partial m}$, [c]	+	+
КПД механической части привода η	+	+
Момент инерции ротора двигателя $J_{\partial s}$, [кгм 2]	+	+
Начальная угловая скорость нагрузки ω_{ycm} , [$pa\partial / c$]	+	
Передаточное отношение редуктора і	+	
Момент сопротивления нагрузки M_c , [H_M]	+	
Момент инерции нагрузки $J_{\scriptscriptstyle H}$, [кгм 2]	+	
Начальная линейная скорость нагрузки V_{ycm} , [M/c]		+
Передаточное отношение редуктора ρ , [$M/pa\partial$]		+
Сила сопротивления (трения) F_c , $[H]$		+
Масса нагрузки $m_{_H}$, [κ г]		+

По исходным данным определяются:

- приведенная начальная скорость нагрузки $\omega_{nn} = \omega_{vcm} \cdot i$ или $\omega_{nn} = V_{vcm} / \rho$;
- приведенный момент сопротивления $M_{cn} = M_c / \iota \eta$ или $M_{cn} = F_c \rho / \eta$;
- приведенный момент инерции $J_n = J_{\partial \theta} + J_{_H}/i^2$ или $J_n = J_{\partial \theta} + m_{_H}\rho^2$.

При динамическом торможении трехфазного АД с кз ротором обмотка статора отключается от сети трехфазного переменного напряжения U_c и подключается к источнику постоянного напряжения U_n (рис. 1a). В виду относительной простоты технической реализации наибольшее распространение получил несимметричный вариант, когда постоянное напряжение подключается к двум последовательно включенным фазам статора. Постоянный ток I_n , протекая по обмотке статора, создает неподвижное в пространстве магнитное поле, которое наводит ЭДС и ток в обмотке вращающегося ротора. Ток обмотки ротора создает свое магнитное поле,

взаимодействие которого с магнитным потоком статора приводит к появлению тормозного момента.

Расчет режима динамического торможения заключается в определении величины постоянного тока I_n , обеспечивающей заданное время торможения $t_{\partial m}$.

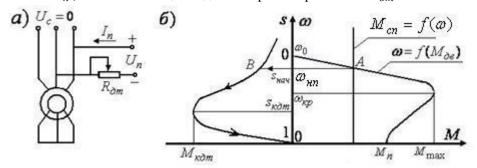


Рис. 1 Режим динамического торможения трехфазного АД с кз ротором; а) схема включения двигателя; б) механические характеристики

Если точка А соответствует установившемуся режиму работы при моменте двигателя $M_{\partial B}=M_{cn}$ и при скорости $\omega=\omega_{Hn}$ (рис. 16), то при переходе к режиму динамического торможения рабочая точка из А перемещается в В и в процессе торможения скорость уменьшается по механической кривой динамического торможения от начальной $\omega_{haq}=\omega_{hn}$ до конечной $\omega_{\kappa OH}=0$ под действием тормозного момента двигателя $M_{\partial m}$ и момента сопротивления M_{cn} . Механическая характеристика двигателя в режиме динамического торможения располагается во втором квадранте и величина критического момента $M_{\kappa \partial m}$ определяется величиной тока I_n [1, 2].

При построении механических характеристик в режиме динамического торможения постоянный ток I_n заменяют переменным током I_{19K6} , который равнозначен ему по создаваемой магнитодвижущей силе. При соединении обмоток статора в звезду

$$I_{1_{3KB}} = I_n \cdot \sqrt{2/3} \approx 0.816I_n \tag{1}$$

Предлагается следующая методика определения требуемой величины тока I_n . В литературе [3] получено выражение, позволяющее с достаточно высокой степенью точности определить значение $M_{\kappa\partial m}$

$$M_{\kappa \partial m} = \frac{2.53 (I_{19\kappa 6}^*)^2}{1 + 0.505 I_{19\kappa 6}^*} \cdot \frac{U_{1\phi} I_0}{\omega_0}$$
 (2)

где $U_{1\phi}$ - номинальное напряжение обмотки статора; I_0 - ток намагничивания (холостого хода) двигателя; ω_0 - скорость холостого хода двигателя;

$$I_{19\kappa\theta}^* = I_{19\kappa\theta} / I_0 \approx 0.816 I_n / I_0$$
 (3)

Из выражения (2) получаем квадратное уравнение относительно тока $I_{1_{3\kappa 6}}^{*}$

$$2.53U_{1\phi}I_0(I_{19\kappa\theta}^*)^2 - 0.505M_{\kappa\partial m}\omega_0I_{19\kappa\theta}^* - M_{\kappa\partial m}\omega_0 = 0$$
 (4)

Величина тока I_0 определяется по формуле

$$I_0 \approx I_{1_{HOM}} (\sin \varphi - \frac{\cos \varphi}{2\lambda_M})$$
 (5)

где I_{1hom} - номинальная величина тока обмотки статора; $\lambda_{\scriptscriptstyle M}$ - паспортная величина коэффициента механической перегрузки.

Для определения величины $M_{\kappa\partial m}$ введем понятие среднего момента двигателя при динамическом торможении $M_{cp\,ao}^{\,\partial m}$. Это постоянный в течение времени торможения момент, обеспечивающий то же время торможения, что и реальный момент двигателя

$$M_{CD ad}^{\partial m} = M_{Cn} - J_n \omega_{Hn} / t_{\partial m} \approx M_{\kappa \partial m} / 2$$
 (6)

Из выражения (6) определяем значение $M_{\kappa \partial m}$ и вставляем его в уравнение (4)

$$M_{\kappa\partial m} \approx 2M_{cp\,a\partial}^{\partial m} \approx 2 \cdot (M_{cn} - J_n \omega_{nn} / t_{\partial m})$$

Решив уравнение (4) определяем требуемое значение

$$I_{19\kappa\theta}^* = \frac{0.505 M_{\kappa \partial m} \omega_o \pm \sqrt{(0.505 M_{\kappa \partial m} \omega_o)^2 + 10.12 U_{1\phi} I_0 M_{\kappa \partial m} \omega_o}}{5.06 M_{\kappa \partial m} \omega_o}$$
(7)

Из выражения (3) определяем требуемое значение постоянного тока, обеспечивающее заданную величину $M_{\kappa \partial m}$

$$I_n = I_{19K6}^* I_o / 0.816$$
 (8)

В реальной схеме (рис. 1a) величина постоянного тока I_n ограничивается только активным сопротивлением 2-х фаз обмотки статора $(2R_{1\phi})$ и сопротивлением настроечного резистора $R_{\partial m}$ и не должна превышать номинального значения тока в обмотке статора $I_{1 HOM}$.

Однако, поскольку у трехфазных АД с кз ротором начальные тормозные моменты малы для их увеличения (обеспечения заданного времени торможения) в обмотку статора подают постоянный ток, равный 4-5 – кратному значению тока холостого хода

$$I_n \le (4 \div 5)I_0 \tag{9}$$

Если полученное значение I_n превышает $I_{1 hom}$, то необходимо осуществить проверку двигателя на нагрев. Нагрев двигателя не будет превышать допустимой температуры при выполнении условия

$$M_{2KB} \le M_{HOM}$$
 (10)

где $M_{_{9K6}}$ - эквивалентный момент двигателя, определяемый за цикл работы и учитывающий долю времени динамического торможения в общем цикле работы двигателя; $M_{_{HOM}}$ - номинальный момент двигателя.

Заключение

Предлагаемая методика позволяет оценить возможность использования трехфазного АД с кз ротором в режиме динамического торможения при заданном времени $t_{\partial m}$ без экспериментального исследования, а именно:

- 1. Определить требуемую величину постоянного тока I_n (7, 8), обеспечивающую заданное время торможения $t_{\partial m}$.
- 2. Оценить полученное значение I_n с точки зрения допустимого нагрева двигателя (9, 10).
- 3. Если требуемая величин I_n не удовлетворяет условиям (9) или (10), то следует рассмотреть возможность торможения противовключением или выбрать другой двигатель данной серии ближайшей большей мощности.

Литература

- 1. Чиликин М.Г. Общий курс электропривода: Учебник для вузов / М.Г. Чиликин, А.С. Сандлер. 6-е изд., доп. и перераб. М.: Энергоиздат, 1981. 576 с.: ил.
- 2. Ильинский Н.Ф. Основы электропривода: Учеб. пособие для вузов / Н.Ф. Ильинский. 2-е изд., перераб. и доп. М.: Издательство МЭИ, 2003. 224 с.: ил.
- 3. Мейстель А.М. Электроприводы с полупроводниковым управлением. Динамическое торможение приводов с асинхронными двигателями: Под редакцией М.Г. Чиликина / А.М. Мейстель. М.: Л.: Издательство «Энергия», 1967. 136 с.: ил.